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Chapter 1

Introduction

The NASA Ames Stereo Pipeline (ASP) is a suite of automated geodesy and stereogrammetry tools designed
for processing planetary imagery captured from orbiting and landed robotic explorers on other planets or
here on Earth. It was designed to process stereo imagery captured by NASA and commercial spacecraft and
produce cartographic products including digital elevation models (DEMs), ortho-projected imagery, and 3D
models. These data products are suitable for science analysis, mission planning, and public outreach.

1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D sur-
face reconstruction and visualization capabilities for planetary exploration for more than a decade. First
demonstrated during the Mars Path�nder Mission, the IRG has delivered tools providing these capabil-
ities to the science operations teams of the Mars Polar Lander (MPL) mission, the Mars Exploration
Rover (MER) mission, the Mars Reconnaissance Orbiter (MRO) mission, and most recently the Lunar
Reconnaissance Orbiter (LRO) mission. A critical component technology enabling this work is the Ames
Stereo Pipeline (ASP). The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface
models from stereo image pairs.

Although initially developed for ground control and scienti�c visualization applications, the Stereo Pipeline
has evolved in recent years to address orbital stereogrammetry and cartographic applications. In particu-
lar, long-range mission planning requires detailed knowledge of planetary topography, and high resolution
topography is often derived from stereo pairs captured from orbit. Orbital mapping satellites are sent as
precursors to planetary bodies in advance of landers and rovers. They return a wealth of imagery and other
data that helps mission planners and scientists identify areas worthy of more detailed study. Topographic
information often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping
missions are returning orders of magnitude more data than ever before. Data volumes from the Mars and
Lunar Reconnaissance Orbiter missions now measure in the tens of terabytes. There is growing consensus
that existing processing techniques, which are still extremely human intensive and expensive, are no longer
adequate to address the data processing needs of NASA and the Planetary Science community. To pick an
example of particular relevance, the High Resolution Imaging Science Experiment (HiRISE) instrument has
captured a few thousand stereo pairs. Of these, only about two hundred stereo pairs have been processed to
date; mostly on human-operated, high-end photogrammetric workstations. It is clear that much more value
could be extracted from this valuable raw data if a more streamlined, e�cient process could be developed.

The Stereo Pipeline was designed to address this very need. By applying recent advances in robotics and
computer vision, we have created an automated process that is capable of generating high quality DEMs

1
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Figure 1.1: This 3D model was generated from a Mars Orbiter Camera (MOC) image pair M01/00115
and E02/01461 (34.66N, 141.29E). The complete stereo reconstruction process takes approximately thirty
minutes on a 3.0 GHz workstation for input images of this size (1024 × 8064 pixels). This model, shown
here without vertical exaggeration, is roughly 2 km wide in the cross-track dimension.

with minimal human intervention. Users of the Stereo Pipeline can expect to spend some time picking
a handful of settings when they �rst start processing a new type of imagery, but once this is done, the
Stereo Pipeline can be used to process tens, hundreds, or even thousands of stereo pairs without further
adjustment. With the release of this software, we hope to encourage the adoption of this tool chain at
institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines.
As this tool continues to mature, we believe that it will be capable of producing digital elevation models of
exceptional quality without any human intervention.

1.2 Human vs. Computer: When to Choose Automation?

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated
photogrammetric workstation? This is a philosophical question with an answer that is likely to evolve over
the coming years as automated data processing technologies become more robust and widely adopted. For
now, our opinion is that you should always rely on human-guided, manual data processing techniques for
producing mission critical data products for missions where human lives or considerable capital resources
are at risk. In particular, maps for landing site analysis and precision landing absolutely require the bene�t
of an expert human operator to eliminate obvious errors in the DEMs, and also to guarantee that the proper
procedures have been followed to correct satellite telemetry errors so that the data have the best possible
geodetic control.

When it comes to using DEMs for scienti�c analysis, both techniques have their merits. Human-guided
stereo reconstruction produces DEMs of unparalleled quality that bene�t from the intuition and experience
of an expert. The process of building and validating these DEMs is well-established and accepted in the

2
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scienti�c community.

However, only a limited number of DEMs can be processed to this level of quality. For the rest, automated
stereo processing can be used to produce DEMs at a fraction of the cost. The results are not necessarily
less accurate than those produced by the human operator, but they will not bene�t from the same level of
scrutiny and quality control. As such, users of these DEMs must be able to identify potential issues, and
be on the lookout for errors that may result from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation
and build an understanding of how stereo reconstruction and bundle adjustment can be best used together
to produce high quality results. You are welcome to contact us if you have any questions (section 1.4).

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the VisionWorkbench software which is a general purpose image processing
and computer vision library also developed by the IRG. Some of the tools discussed in this document
are actually Vision Workbench programs, and any distribution of the Stereo Pipeline requires the Vision
Workbench. Unless you're compiling the Vision Workbench and Stereo Pipeline from source, the distinctions
probably won't matter to you.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

For processing non-terrestrial NASA satellite imagery, Stereo Pipeline must be installed alongside a copy of
United States Geological Survey (USGS) Integrated Software for Imagers and Spectrometers (ISIS). ISIS
is however not required for processing Digital Globe images of Earth, as described in section 2.1.2.

ISIS is widely used in the planetary science community for processing raw spacecraft imagery into high
level data products of scienti�c interest such as map-projected and mosaicked imagery [1, 10, 31]. We chose
ISIS because (1) it is widely adopted by the planetary science community, (2) it contains the authoritative
collection of geometric camera models for planetary remote sensing instruments, and (3) it is open source
software that is easy to leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that
can be used in your existing ISIS work�ow. The Stereo Pipeline supports the ISIS �cube� (.cub) �le format,
and can make use of the ISIS camera models and ancillary information (i.e. SPICE kernels) for imagers
on many NASA spacecraft. The use of this single standardized set of camera models ensures consistency
between products generated in the Stereo Pipeline and those generated by ISIS. Also by leveraging ISIS
camera models, the Stereo Pipeline can process stereo pairs captured by just about any NASA mission.
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1.4 Getting Help

All bugs, feature requests, and general discussion should be sent to the Ames Stereo Pipeline user mailing
list:

stereo-pipeline@lists.nasa.gov

To subscribe to this list, send an empty email message with the subject `subscribe' (without the quotes) to:

stereo-pipeline-request@lists.nasa.gov

To contact the lead developers and project manager directly, send mail to:

stereo-pipeline-owner@lists.nasa.gov

1.5 How to File Bug Reports

If Stereo Pipeline crashes or produces incorrect results, we would very much like to hear from you. You
can send an email to stereo-pipeline-owner@lists.nasa.gov describing the problem. It will be helpful
to attach the logs output by stereo and other tools (section 2.3.2). In some cases we may request your
input data as well.

1.6 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font,
like the stereo program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with
a `>' to denote a regular shell, or with `ISIS' which denotes an ISIS-enabled shell (which means you have
to set the ISISROOT environment variable and sourced the appropriate ISIS 3 Startup script, as detailed in
the ISIS 3 instructions).

> ls

ISIS 3> pds2isis

Italicized constant-width text denotes an option or argument that a user will need to supply. For example,
`stereo E0201461.map.cub M0100115.map.cub out' is speci�c, but `stereo left-image right-image

out' indicates that left-image and right-image are not the names of speci�c �les, but dummy pa-
rameters which need to be replaced with actual �le names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are
either aliases for each other, or di�erent, speci�c options. Default arguments are pre�xed by an equals sign
within parentheses, and line continuation with a backslash:

point2dem [--help|-h] [-r moon|mars] [-s float(=0) ] \
[-o output-filename ] pointcloud -PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud
�le, which is produced by the stereo program and ends in -PC.tif, although its pre�x could be anything
(hence the italics for that part). Everything else is in square brackets indicating that they are optional.

4

mailto:stereo-pipeline@lists.nasa.gov
mailto:stereo-pipeline-request@lists.nasa.gov
mailto:stereo-pipeline-owner@lists.nasa.gov


Introduction

Both --help and -h are really the same thing (both will get you help). Similarly, the argument to the -r
option must be either moon or mars. The -s option takes a �oating point value as its argument, and has a
default value of zero. The -o option takes a �lename that will be used as the output DEM.

Although there are two lines of constant-width text, the backslash at the end of the �rst line indicates
that the command continues on the second line. You can either type everything into one long line on your
own terminal, or use the backslash character (or appropriate line continuation character) and a return to
continue typing on a second line in your terminal.

1.7 Referencing the Ames Stereo Pipeline in Your Work

Although no peer-reviewed paper or report yet exists which details the Ames Stereo Pipeline (see the warning
below about this being research software), if you do use this software in your work, we'd appreciate it if
you referenced one or more of these abstracts:

Moratto, Z. M., M. J. Broxton, R. A. Beyer, M. Lundy, and K. Husmann. 2010. Ames Stereo Pipeline,
NASA's Open Source Automated Stereogrammetry Software. Lunar and Planetary Science Confer-
ence 41, abstract #2364. [ADS Abstract].

Broxton, M. J. and L. J. Edwards. 2008. The Ames Stereo Pipeline: Automated 3D Surface Recon-
struction from Orbital Imagery. Lunar and Planetary Science Conference 39, abstract #2419. [ADS
Abstract].

1.8 Warnings to Users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a research product. There may be bugs or incomplete features. We reserve the
ability to change the API and command line options of the tools we provide. Although we hope you will
�nd this release helpful, you may use it at your own risk. Please check each release's NEWS �le to see a
summary of our recent changes.

While we are con�dent that the algorithms used by this software are robust, they have not been sys-
tematically tested or rigorously compared to other methods in the peer-reviewed literature. We strongly
recommend that you consult us �rst before publishing any results based on the cartographic products
produced by this software.
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Chapter 2

Installation

2.1 Binary Installation

This is the recommended method. Only the Stereo Pipeline binaries are required. ISIS is required only
for users who wish to process NASA non-terrestrial imagery. A full ISIS installation is not required for
operation of Stereo Pipeline programs (only the ISIS data directory is needed), but is required for certain
preprocessing steps before Stereo Pipeline programs are run for planetary data. If you only want to process
terrestrial Digital Globe imagery, skip to section 2.1.2.

Stereo Pipeline Tarball
The main Stereo Pipeline page is http://irg.arc.nasa.gov/ngt/stereo. Download the option that
matches the platform you wish to use. The recommended, but optional, ISIS version is listed next to
the name.

USGS ISIS
If you are working with non-terrestrial imagery, you will need to install ISIS so that you can perform
preprocessing such as radiometric calibration and ephemeris attachment. The ISIS installation guide
is at http://isis.astrogeology.usgs.gov/documents/InstallGuide. You must use their binaries
as-is; if you need to recompile, you can follow the Source Installation guide for the Stereo Pipeline in
Section 2.2. Note also that the USGS provides only the current version of ISIS and the previous version
(denoted with a `_OLD' su�x) via their rsync service. If the current version is newer than the version
of ISIS that the Stereo Pipeline is compiled against, be assured that we're working on rolling out a
new version. However, since Stereo Pipeline has its own self-contained version of ISIS's libraries built
internally, you should be able to use a newer version of ISIS with the now dated version of ASP. This
is assuming no major changes have taken place in the data formats or camera models by USGS. At
the very least, you should be able to rsync the previous version of ISIS if a break is found. To do so,
view the listing of modules that is provided via the `rsync isisdist.astrogeology.usgs.gov::'
command. You should see several modules listed with the `_OLD' su�x. Select the one that is
appropriate for your system, and rsync according to the instructions.

In closing, running the Stereo Pipeline executables only requires that you have downloaded the ISIS
secondary data and have appropriately set the ISIS3DATA environment variable. This is normally
performed for the user by ISIS startup script, $ISISROOT/scripts/isis3Startup.sh.

2.1.1 Quick Start for ISIS Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.
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Fetch ISIS Binaries
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Fetch ISIS Data
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Untar Stereo Pipeline
tar xzvf StereoPipeline-VERSION-ARCH-OS.tar.gz

Add Stereo Pipeline to Path (optional)
bash: export PATH="/path/to/StereoPipeline /bin:${PATH}"

csh: setenv PATH "/path/to/StereoPipeline /bin:${PATH}"

Set Up ISIS
bash:

export ISISROOT=/path/to/isisroot

source $ISISROOT/scripts/isis3Startup.sh

csh:
setenv ISISROOT /path/to/isisroot

source $ISISROOT/scripts/isis3Startup.csh

Try It Out
See the next chapter (Chapter 3) for an example.

2.1.2 Quick Start for Digital Globe Users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

Untar Stereo Pipeline
tar xvfz StereoPipeline-VERSION-ARCH-OS.tar.gz

Try It Out
Processing Earth imagery is described in the data processing tutorial in chapter 4.

2.1.3 Common Errors

Here are some errors you might see, and what it could mean. Treat these as templates for problems. In
practice, the error messages might be slightly di�erent.

**I/O ERROR** Unable to open [$ISIS3DATA/Some/Path/Here].

Stereo step 0: Preprocessing failed

You need to set up your ISIS environment or manually set the correct location for ISIS3DATA.

point2mesh stereo-output-PC.tif stereo-output-L.tif

[...]

99% Vertices: [************************************************************] Complete!

> size: 82212 vertices

Drawing Triangle Strips

Attaching Texture Data

zsh: bus error point2mesh stereo-output-PC.tif stereo-output-L.tif
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The source of this problem is an old version of OpenSceneGraph in your library path. Check your
LD_LIBRARY_PATH (for Linux), DYLD_LIBRARY_PATH (for OSX), or your DYLD_FALLBACK_LIBRARY_PATH (for
OSX) to see if you have an old version listed, and remove it from the path if that is the case. It is not
necessary to remove the old versions from your computer, you just need to remove the reference to them
from your library path.

bash: stereo: command not found

You need to add the bin directory of your deployed Stereo Pipeline installation to the environmental
variable PATH.

2.2 Installation from Source

This method is for advanced users. You will need to fetch the Stereo Pipeline source code from GitHub at
https://github.com/NeoGeographyToolkit/StereoPipeline and then follow the instructions speci�ed
in INSTALLGUIDE.

2.3 Settings Optimization

Finally, the last thing to be done for Stereo Pipeline is to setup up Vision Workbench's render and logging
settings. This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multithreaded image processing library used by Stereo Pipeline. The settings by
which Vision Workbench processes is con�gurable by having a .vwrc �le hidden in your home directory.
Below is an example.
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1 # This is an example VW configuration file. Save this file to ~/.vwrc

2 # to adjust the VW log settings, even if the program is already running.

3
4 # General settings

5 [general]

6 default_num_threads = 16

7 write_pool_size = 40

8 system_cache_size = 1024000000 # ~ 1 GB

9
10 # The following integers are associated with the log levels throughout the

11 # Vision Workbench. Use these in the log rules below.

12 #

13 # ErrorMessage = 0

14 # WarningMessage = 10

15 # InfoMessage = 20

16 # DebugMessage = 30

17 # VerboseDebugMessage = 40

18 # EveryMessage = 100

19 #

20 # You can create a new log file or adjust the settings

21 # for the console log:

22 # logfile <filename>

23 # - or -

24 # logfile console

25
26 # Once you have created a logfile (or selected the console), you can

27 # add log rules using the following syntax. (Note that you can use

28 # wildcard characters '*' to catch all log_levels for a given

29 # log_namespace, or vice versa.)

30
31 # <log_level> <log_namespace>

32
33 # Below are examples of using the log settings.

34
35 # Turn on various logging levels for several subsystems, with the

36 # output going to the console (standard output).

37 [logfile console]

38 # Turn on error and warning messages for the thread subsystem.

39 10 = thread

40 # Turn on error, warning, and info messages for the asp subsystem.

41 20 = asp

42 # Turn on error, warning, info, and debug messages for the stereo subsystem.

43 30 = stereo

44 # Turn on every single message for the cache subsystem (this will be

45 # extremely verbose and is not recommended).

46 # 100 = cache

47 # Turn off all progress bars to the console (not recommended).

48 # 0 = *.progress

49
50 # Turn on logging of error and warning messages to a file for the

51 # stereo subsystem. Warning: This file will be always appended to, so

52 # it should be deleted periodically.

53 # [logfile /tmp/vw_log.txt]

54 # 10 = stereo

There are a lot of possible options that can be implemented in the above example. Let's cover the most
important options and the concerns the user should have when selecting a value.
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2.3.1 Performance Settings

default_num_threads (default=2)
This sets the maximum number of threads that can be used for rendering. When stereo's subpixel_rfne
is running you'll probably notice 10 threads are running when you have default_num_threads set
to 8. This is not an error, you are seeing 8 threads being used for rendering, 1 thread for holding
main()'s execution, and �nally 1 optional thread acting as the interface to the �le driver.

It is usually best to set this parameter equal to the number of processors on your system. Be sure to
include the number of logical processors in your arithmetic if your system supports hyper-threading.

Adding more threads for rasterization increases the memory demands of Stereo Pipeline. If your
system is memory limited, it might be best to lower the default_num_threads option. Remember
that 32 bit systems can only allocate 4 GB of memory per process. Despite Stereo Pipeline being a
multithreaded application, it is still a single process.

write_pool_size (default=21)
The write_pool_size option represents the max waiting pool size of tiles waiting to be written to
disk. Most �le formats do not allow tiles to be written arbitrarily out of order. Most however will
let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the `write
pool' before it can be written to disk. If the `write pool' �lls up, only the next tile in order can be
rasterized. That makes Stereo Pipeline perform like it is only using a single processor.

Increasing the write_pool_sizemakes Stereo Pipeline more able to use all processing cores in the sys-
tem. Having this value too large can mean excessive use of memory. For 32 bit systems again, they can
run out of memory if this value is too high for the same reason as described for default_num_threads.

system_cache_size (default=805306368)
Accessing a �le from the hard drive can be very slow. It is especially bad if an application needs
to make multiple passes over an input �le. To increase performance, Vision Workbench will usually
leave an input �le stored in memory for quick access. This �le storage is known as the 'system cache'
and its max size is dictated by system_cache_size. The default value is 768 MB.

Setting this value too high can cause your application to crash. It is usually recommend to keep this
value around 1/4 of the maximum available memory on the system. For 32 bit systems, this means
don't set this value any greater than 1 GB. The units of this property is in bytes.

2.3.2 Logging Settings

The messages displayed in the console by Stereo Pipeline are grouped into several namespaces, and by level
of verbosity. An example of customizing Stereo Pipeline's output is given in the .vwrc �le shown above.

Several of the tools in Stereo Pipeline, including stereo, automatically append the information displayed
in the console to a log �le in the current output directory. These logs contain in addition some data about
your system and settings, which may be helpful in resolving problems with the tools.

It is also possible to specify a global log �le to which all tools will append to, as illustrated in .vwrc.
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Tutorial: Processing Mars Orbiter Camera

Imagery

3.1 Quick Start

The Stereo Pipeline package contains command-line programs that convert a stereo pair in ISIS cube format
into a 3D �point cloud� image: stereo-output -PC.tif. This is an intermediate format that can be passed
along to one of several programs that convert a point cloud into a mesh for 3D viewing, a gridded digital
elevation model (DEM) for GIS purposes, or a LAS/LAZ point cloud.

There are a number of ways to �ne-tune parameters and analyze the results, but ultimately this software
suite takes images and builds models in a mostly automatic way. To create a point cloud �le, you simply
pass two image �les to the stereo command:

ISIS 3> stereo left_input_image.cub right_input_image.cub stereo-output

The string stereo-output is an arbitrary output pre�x, it is used when generating names for stereo output
�les. For example, it can be set to results/output, in which case all output �les will be in the results

directory and start with the pre�x output.

See section 5.1 for a more detailed discussion.

You can then make a visualizable mesh or a DEM �le with the following commands (the stereo-output -PC.tif
and stereo-output -L.tif �les are created by the stereo program above):

ISIS 3> point2mesh stereo-output-PC.tif stereo-output-L.tif

ISIS 3> point2dem stereo-output-PC.tif

More details are provided in section 5.2.

3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of Mars Orbital Camera (MOC)
[18, 17] images whose Planetary Data System (PDS) Product IDs are M01/00115 and E02/01461. This
data can be downloaded from the PDS directly, or they can be found in the data/MOC/ directory of your
Stereo Pipeline distribution.
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Figure 3.1:
This �gure shows
E0201461.cub and
M0100115.cub open
in ISIS's qview
program. The view
on the left shows
their full extents
at the same zoom
level, showing how
they have di�erent
ground scales. The
view on the right
shows both images
zoomed in on the
same feature.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment
and radiometrically calibrated. You will need to be in an ISIS environment (have set the ISISROOT envi-
ronment variable and sourced the appropriate ISIS 3 startup script, as detailed in the ISIS 3 instructions;
we will denote this state with the `ISIS 3>' prompt). Then you can use the mocproc program, as follows:

ISIS 3> mocproc from=M0100115.imq to=M0100115.cub Mapping=NO

ISIS 3> mocproc from=E0201461.imq to=E0201461.cub Mapping=NO

There are also Ingestion and Calibration parameters whose defaults are `YES' which will bring the image
into the ISIS format and perform radiometric calibration. By setting the Mapping parameter to `NO', the
resultant �le will be an ISIS cube �le that is calibrated, but not map-projected. Note that while we have
not explicitly run spiceinit, the Ingestion portion of mocproc quietly ran spiceinit for you (you'll �nd
the record of it in the ISIS Session Log, usually written out to a �le named print.prt). Refer to Figure 3.1
to see the results at this stage of processing.

Datasets for other type of cameras or other planets can be pre-processed similarly, using the ISIS tools
speci�c to them.

3.2.2 Aligning Images

Once the .cub �les are obtained, it is possible to run stereo right away, as

ISIS 3> stereo E0201461.cub M0100115.cub \

--alignment-method affineepipolar \

-s stereo.default.example results/output
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In this case, the �rst thing stereo does is to internally align (or rectify the images), which helps with �nding
stereo matches. Here we have used affineepipolar alignment. Another option is to use homography

alignment, as described in section 5.1.1.

Alternatively, the images can be aligned externally, by map-projecting them in ISIS. External alignment
can sometimes give better results than the simple internal alignment described earlier, especially if the
images are taken from very di�erent perspectives, or if the curvature of the planet/body being imaged is
non-negligible. We will now describe how to do this alignment, but we also provide the cam2map4stereo.py
program (page 92) which performs this work automatically for you.

The ISIS cam2map program will map-project these images:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The �rst projection with M0100115.cub

produced a map-projected image centered on the center of that image. The projection of E0201461.cub
used the map= parameter to indicate that cam2map should use the same map projection parameters as
those of M0100115.map.cub (including center of projection, map extents, map scale, etc.) in creating the
projected image. By map-projecting the image with the worse resolution �rst, and then matching to that,
we ensure two things: (1) that the second image is summed or scaled down instead of being magni�ed up,
and (2) that we are minimizing the �le sizes to make processing in the Stereo Pipeline more e�cient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and
extracting their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct
bundle adjustment (see Chapter 7, page 47) as a pre-processing step, you would do so between mocproc (as
run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have
a pair of images where one image has a footprint on the ground that is much larger than the other, only the
area that is common to both (the intersection of their areas) should be kept to perform correlation (since
non-overlapping regions don't contribute to the stereo solution). If the image with the larger footprint size
also happens to be the image with the better resolution (i.e. the image run through cam2map second with
the map= parameter), then the above cam2map procedure with matchmap=true will take care of it just �ne.
Otherwise you'll need to �gure out the latitude and longitude boundaries of the intersection boundary (with
the ISIS camrange program). Then use that smaller boundary as the arguments to the MINLAT, MAXLAT,
MINLON, and MAXLON parameters of the �rst run of cam2map. So in the above example, after mocproc with
Mapping= NO you'd do this:

ISIS 3> camrange from=M0100115.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.079818835324

MaximumLatitude = 34.436797628116

MinimumLongitude = 141.50666207418

MaximumLongitude = 141.62534719278

End_Group

... more output of camrange omitted ...
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ISIS 3> camrange from=E0201461.cub

... lots of camrange output omitted ...

Group = UniversalGroundRange

LatitudeType = Planetocentric

LongitudeDirection = PositiveEast

LongitudeDomain = 360

MinimumLatitude = 34.103893080982

MaximumLatitude = 34.547719435156

MinimumLongitude = 141.48853937384

MaximumLongitude = 141.62919740048

End_Group

... more output of camrange omitted ...

Now compare the boundaries of the two above and determine the intersection to use as the boundaries for
cam2map:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE=CAMERA \

MINLAT=34.10 MAXLAT=34.44 MINLON=141.50 MAXLON=141.63

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the �rst run of cam2map, because the second one uses the
map= parameter to mimic the map-projection of the �rst. These two images are not radically di�erent in
areal coverage, so this is not really necessary for these images, it is just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page 92) will
take care of all these steps for you.

At this stage we can run the stereo program with map-projected images:

ISIS 3> stereo E0201461.map.cub M0100115.map.cub --alignment-method none \

-s stereo.default.example results/output

Now you may skip to chapter 5 which will discuss the stereo program in more detail and the other tools
in ASP.
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Tutorial: Processing Earth Digital Globe

Imagery

In this chapter we will focus on how to process Earth imagery, or more speci�cally Digital Globe imagery.
This is di�erent from our previous chapter in that at no point will we be using ISIS utilities. This is because
ISIS only supports NASA instruments, while most Earth imagery comes from commercial providers.

Digital Globe provides imagery from Quick Bird and the two World View satellites. These are the hardest
images to process with Ames Stereo Pipeline because they are exceedingly large, much larger than HiRISE
imagery. There is also a wide range of terrain challenges and atmospheric e�ects that can confuse ASP.
Trees are particularly di�cult for us since their texture is nearly nadir and perpendicular to our line of
sight. It is important to know that the driving force behind our support for Digital Globe imagery is to
create models of ice and bare rock. That is the type of imagery that we have tested with and have focused
on. If we can make models of wooded or urban areas, that is a bonus, but we can't provide any advice for
how to perform or improve the results if you choose to use ASP in that way.

ASP can only process Level 1B satellite imagery, and cannot process Digital Globe's aerial images.

The camera information for Digital Globe images is contained in an XML �le for each image. In addition
to the exact linear camera model, the XML �le also has its RPC approximation. In this chapter we will
focus only on processing data using the linear camera model. For more detail on RPC camera models we
refer to section 8.10 on page 68, which discusses processing GeoEye imagery which comes only with RPC
coe�cients.

Our implementation of the linear camera model only models the geometry of the imaging hardware itself and
velocity aberration. We do not currently model refraction due to light bending in Earth's atmosphere. It is
our understanding that this could represent misplacement of points up to a meter for some imagery. However
this is still smaller error than the error from measurement of the spacecraft's position and orientation. We
do not provide facilities for correcting spacecraft altitude either. However, the pc_align tool discussed in
section 5.2.4 can be used to align the terrain obtained from Stereo Pipeline to an accurate set of ground
measurements.

In the next two sections we will show how to process unmodi�ed and map-projected variants of World
View imagery. This steps will be the same for Digital Globe's other satellites. The imagery we are using
are from the free stereo pair example of Lucknow, India available from Digital Globe's website [13]. These
images represent a non-ideal problem for us since this is an urban location, but at least you should be able
to download this imagery yourself and follow along.
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4.1 Processing Raw

After you have downloaded the example stereo imagery of India, you will �nd a directory titled
052783824050_01_P001_PAN. It has a lot of �les and many of them contain redundant information just
displayed in di�erent formats. We are interested only in the TIF or NTF imagery and the similarly named
XML �les.

Further investigation of the �les downloaded will show that there are in fact 4 image �les. This is because
Digital Globe breaks down a single observation into multiple �les for what we assume are size reasons. These
�les have a pattern string of �_R[N]C1-�, where N increments for every subframe of the full observation.
The tool named dg_mosaic can be used to mosaic (and optionally reduce the resolution of) such a set of
sub-observations into a single image �le and create an appropriate camera �le

> dg_mosaic 12FEB12053305*TIF --output-prefix 12FEB12053305 --reduce-percent 50

and analogously for the second set. See section A.8 for more details. The stereo program can use either
the original or the mosaicked images.

Since we are ingesting these images raw, it is strongly recommended that you use a�ne epipolar alignment
to reduce the search range. The stereo command and a rendering in QGIS are shown below.

> stereo -t dg --subpixel-mode 1 --alignment-method affineepipolar \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML dg/dg

Figure 4.1: Example colorized height map and ortho image output.

Above, we have used subpixel-mode 1 which is less accurate but reasonably fast. More details about how
to set this and other stereo parameters can be found in section 5.1.1.

It is important to note that we could have performed stereo using the approximate RPC model instead of
the exact linear camera model (both models are in the same XML �le), by switching the session in the
stereo command above from -t dg to -t rpc. The RPC model is somewhat less accurate, so the results
will not be the same, in our experiments we've seen di�erences in the 3D terrains using the two approaches
of 5 meters or more.
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4.2 Processing Map-Projected Imagery

Eventually you will run into Digital Globe imagery that has too much parallax to be processed in a
reasonable time. (That was not the case for Lucknow, India because it is so �at.) We can speed up the
result by performing stereo on map-projected versions of the images. The map-projection is done with a
tool named mapproject (section A.9). It uses the simpli�ed RPC model contained in the camera XML �le
to project a given camera image onto a pre-determined low-resolution DEM without holes.

ASP will then perform correlation on the map-projected images, and, before doing triangulation will inter-
nally project back the image pixels onto the original camera locations, precisely reversing the transformation
done with mapproject. Since map-projection is a temporary pre-processing step, it is of little importance
that the DEM is low-resolution, or that we use the less accurate (but faster) RPC model to perform it.

The hardest part of this whole process is getting the input low-resolution DEM. In this example we will use
a variant of NASA SRTM data with no holes. Other choices might be GMTED2010, USGS's NED data,
or NGA's DTED data.

It is important to note that ASP expects the input low-resolution DEM to be in reference to a datum
ellipsoid, such as WGS84 or NAD83. If the DEM is in respect to either the EGM96 or NAVD88 geoids,
the ASP tool dem_geoid can be used to convert the DEM to WGS84 or NAD83 (section A.7). (The same
tool can be used to convert back the �nal output ASP DEM to be in reference to a geoid, if desired.)

Not applying this conversion might not properly negate the parallax seen between the two images, though it
will not corrupt the triangulation results. In other words, sometimes one may be able to ignore the vertical
datums on the input but we do not recommend doing that. Also, you should note that the geoheader
attached to those types of �les usually does not describe the vertical datum they used. That can only be
understood by careful reading of your provider's documents.

In this example we use as an input low-resolution DEM the �le srtm_53_07.tif, a 90 meter resolution tile
from the CGIAR-CSI modi�cation of the original NASA SRTM product [9]. The NASA SRTM square for
this example spot in India is N26E080.

Below are the commands for map-projecting the input and then running through stereo. You can use any
projection you like as long as it preserves detail in the imagery. Note that the last parameter in the stereo
call is the input low-resolution DEM.

Figure 4.2: Example colorized height map and ortho image output.

Commands

> mapproject --t_srs "+proj=eqc +units=m +datum=WGS84" \
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--tr 0.5 srtm_53_07.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

left_mapped.tif

> mapproject --t_srs "+proj=eqc +units=m +datum=WGS84" \

--tr 0.5 srtm_53_07.tif \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

right_mapped.tif

> stereo -t dg --subpixel-mode 1 --alignment-method none \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

If the �t_srs option is not speci�ed, it will be read from the low-resolution input DEM.

The complete list of options for mapproject is described in section A.9.

In the stereo command, we have used subpixel-mode 1 which is less accurate but reasonably fast. We
have also used alignment-method none, since the images are map-projected, and thus no alignment is
necessary. More details about how to set these and other stereo parameters can be found in section 5.1.1.

4.3 Handling CCD Boundary Artifacts

Digital Globe World View images [12] may exhibit slight subpixel artifacts which manifest themselves as
discontinuities in the 3D terrain obtained using ASP. We provide a tool named wv_correct which can
largely correct such artifacts for World View-1 and World View-2 images for most TDI. It can be invoked
as follows:

> wv_correct image.ntf image.xml image_out.tif

The corrected images can be used just as the originals, and the camera models do not change. So one can
mosaic them, perform map-projection, do stereo, etc.

This tool is described in section A.15, and an example of using it is in Figure 4.3.

Figure 4.3: Example of a hill-shaded terrain obtained using stereo without (left) and with (right) CCD
boundary artifact corrections applied using wv_correct.
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4.4 Dealing with Terrain Lacking Large Scale Features

Stereo Pipeline's approach to performing correlation is a two-step pyramid algorithm, in which low-
resolution versions of the input images are created, the disparity map (output_prefix -D_sub.tif) is
found, and then this disparity map is re�ned using increasingly higher-resolution versions of the input
images (section 6.2).

This approach usually works quite well for rocky terrain but may fail for snowy landscapes, whose only
features may be small-scale grooves or ridges sculpted by wind (so-called zastrugi) that disappear at low
resolution.

Stereo Pipeline handles such terrains by using a tool named sparse_disp to create output_prefix -D_sub.tif
at full resolution, yet only at a sparse set of pixels for reasons of speed. This low-resolution disparity is
then re�ned as earlier using a pyramid approach.

Figure 4.4: Example of a di�cult terrain obtained without (left) and with (right) sparse_disp. (In these
DEMs there is very little elevation change, hence the �at appearance.)

This mode can be invoked by passing to stereo the option --corr-seed-mode 3. Also, during pyramid
correlation it is suggested to use somewhat fewer levels than the default --corr-max-levels 5, to again
not subsample the images too much and lose the features.

Here is an example:

> stereo -t dg --corr-seed-mode 3 --corr-max-levels 2 \

left_mapped.tif right_mapped.tif \

12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \

12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \

dg/dg srtm_53_07.tif

It is important to note that sparse_disp is written in Python and depends on a variety of binary Python
modules. These modules cannot be distributed with Stereo Pipeline as they depend on the version of
Python installed on your system.

We provide a script which will download and compile the dependencies of this tool for your platform. The
script and instructions are at
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https://github.com/NeoGeographyToolkit/BinaryBuilder/tree/master/build_python_modules

4.5 Processing Multi-Spectral Images

In addition to panchromatic (grayscale) imagery, the Digital Globe satellites also produce lower-resolution
multi-spectral (multi-band) images. Stereo Pipeline is designed to process single-band images only. If
invoked on multi-spectral data, it will quietly process the �rst band and ignore the rest. To use one of the
other bands it can be singled out by invoking dg_mosaic (section 4.1) with the --band <num> option. We
have evaluated ASP with Digital Globe's multi-spectral images, but support for it is still experimental. We
recommend using the panchromatic imagery whenever possible.
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The Next Steps

This chapter will discuss in more detail ASP's stereo process and other tools available to either pre-process
the input images/cameras or to manipulate stereo's outputs, both in the context of planetary ISIS data
and for Earth imagery. This includes how to (a) customize stereo's settings (b) use point2dem to create
3D terrain models, (c) visualize the results, (d) align the obtained point clouds to another data source, (e)
perform 3D terrain adjustments in respect to a geoid, etc.

5.1 Stereo Pipeline in More Detail

5.1.1 Setting Options in the stereo.default File

The stereo program requires a stereo.default �le that contains settings that a�ect the stereo recon-
struction process. Its contents can be altered for your needs; details are found in appendix B on page 99.
You may �nd it useful to save multiple versions of the stereo.default �le for various processing needs.
If you do this, be sure to specify the desired settings �le by invoking stereo with the -s option. If this
option is not given, the stereo program will search for a �le named stereo.default in the current working
directory. If stereo does not �nd stereo.default in the current working directory and no �le was given
with the -s option, stereo will assume default settings and continue.

An example stereo.default �le is available in the examples/ directory of ASP. The actual �le has a lot
of comments to show you what options and values are possible. Here's a trimmed version of the important
values in that �le.

alignment-method affineepipolar

cost-mode 2

corr-kernel 21 21

subpixel-mode 1

subpixel-kernel 21 21

All these options can be overridden from the command line, as described in section 5.1.3.

Alignment Method

The most important line in stereo.default is the �rst one, specifying the alignment method. For raw
images, alignment is always necessary, as the left and right images are from di�erent perspectives. Several
alignment methods are supported, including affineepipolar and homography (see section B.1 for details).
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Alternatively, stereo can be performed with map-projected images (section 3.2.2 for ISIS and section 4.2
for Earth imagery). In e�ect we take a smooth low-resolution terrain and map both the left and right raw
images onto that terrain. This automatically brings both images into the same perspective, and as such,
for map-projected images the alignment method is always set to none.

Correlation Parameters

The second and third lines in stereo.default de�ne what correlation metric (normalized cross correlation)
we'll be using and how big the template or kernel size should be (21 pixels square). A pixel in the left image
will be matched to a pixel in the right image by comparing the windows of this size centered at them.

Making the kernel sizes smaller, such as 15 × 15, or even 11 × 11, may improve results on more complex
features, such as steep cli�s, at the expense of perhaps introducing more false matches or noise.

Subpixel Re�nement Parameters

A highly critical parameter in ASP is the value of subpixel-mode, on the fourth line. When set to 1,
stereo performs parabola subpixel re�nement, which is very fast but not very accurate. When set to 2, it
produces very accurate results, but it is about an order of magnitude slower. When set to 3, the accuracy
and speed will be somewhere in between the other methods.

The �fth line sets the kernel size to use during subpixel re�nement (also 21 pixels square).

Search Range Determination

Using these settings alone, ASP will attempt to work out the minimum and maximum disparity it will
search for automatically. However if you wish to, you can explicitly set the extent of the search range by
adding the option:

corr-search -80 -2 20 2

The exact values to use with this option you'll have to discover yourself. The numbers right of corr-search
represent the horizontal minimum boundary, vertical minimum boundary, horizontal maximum boundary,
and �nally the horizontal maximum boundary.

It can be tricky to select a good search range for the stereo.default �le. That's why the best way is to
let stereo perform an automated guess for the search range. If you �nd that you can do a better estimate
of the search range, take look at the intermediate disparity images using the disparitydebug program to
�gure out which search directions can be expanded or contracted. The output images will clearly show
good data or bad data depending on whether the search range is correct.

The worst case scenario is to determine the search range manually. For example, for ISIS images, both
images could be opened in qview and the coordinates of points that can be matched visually can be
compared. Subtract line,sample locations in the �rst image from the coordinates of the same feature in the
second image, and this will yield o�sets that can be used in the search range. Make several of these o�set
measurements and use them to de�ne a line,sample bounding box, then expand this by 50% and use it for
corr-search. This will produce good results in most images.

Also, if you are using an alignment option, you'll instead want to make those disparity measurements
against the written L.tif and R.tif �les (see chapter C) instead of the original input �les.
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Figure 5.1: These are the four viewable .tif
�les created by the stereo program. On
the left are the two aligned, pre-processed
images: (results/output-L.tif and
results/output-R.tif). The next two are
mask images (results/output-lMask.tif
and results/output-rMask.tif), which
indicate which pixels in the aligned images
are good to use in stereo correlation. The
image on the right is the �Good Pixel map�,
(results/output-GoodPixelMap.tif),
which indicates (in gray) which were suc-
cessfully matched with the correlator, and
(in red) those that were not matched.

5.1.2 Performing Stereo Correlation

As already mentioned, the stereo program can be invoked for ISIS images as

ISIS 3> stereo left_image.cub right_image.cub \

-s stereo.default results/output

For Digital Globe imagery the cameras need to be speci�ed separately:

> stereo left.tif right.tif left.xml right.xml \

-s stereo.default results/output

As stated in section 3.1, the string results/output is arbitrary, and in this case we will simply make all
outputs go to the results directory.

When stereo �nishes, it will have produced a point cloud image. Section 5.2 describes how to convert it
to a digital elevation model (DEM) or other formats.

The stereo command can also take multiple input images, performing multi-view stereo (section 5.1.5).

5.1.3 Specifying Settings on the Command Line

All the settings given via the stereo.default �le can be over-ridden from the command line. Just add
a double hyphen (--) in front the option's name and then �ll out the option just as you would in the
con�guration �le. For options in the stereo.default �le that take multiple numbers, they must be
separated by spaces (like `corr-kernel 25 25') on the command line. Here is an example in which we
override the search range and subpixel mode from the command line.

ISIS 3> stereo E0201461.map.cub M0100115.map.cub \

-s stereo.map --corr-search -70 -4 40 4 \

--subpixel-mode 0 results/output
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5.1.4 Stereo on Multiple Machines

If the input images are really large it may desirable to distribute the work over several computing nodes.
ASP provides a tool named parallel_stereo for that purpose. Its usage is described in section A.2.

5.1.5 Multi-View Stereo

ASP does not support full multi-view stereo in which a feature is correlated simultaneously across multiple
images. However, it does o�er several approaches of combining the results of processing multiple images into
one single terrain model. In any of the scenarios described below, it may be helpful to �rst bundle-adjust
the images (section 7.2).

Given several images, the most basic method is to perform pairwise stereo and generate one point cloud
and one DEM for each pair (section 5.2.2), then combine the DEMs with dem_mosaic (section A.6).

Alternatively, multiple point clouds can be created, and then a single DEM can be created with point2dem

(section A.4). In both of these approaches, the point clouds could be �rst registered to a trusted dataset
using pc_align before creating terrain models (section 5.2.4).

Lastly, the stereo command can be invoked with multiple images. The rest of this section describes this
approach. In this scenario, the �rst image is set as reference, then disparities are computed from it to the
other ones, and then joint triangulation is performed using the method from [26]. A single point cloud is
generated with one 3D point for each pixel in the �rst image. The inputs to multi-view stereo and its output
point cloud can be handled in the same way as for two-view stereo (e.g., inputs can be map-projected, the
output can be converted to a DEM, etc.).

Example (for ISIS with three images):

stereo file1.cub file2.cub file3.cub results/run

Example (for Digital Globe data with three map-projected images):

stereo file1.tif file2.tif file3.tif file1.xml file2.xml file3.xml \

results/run input-DEM.tif

The parallel_stereo tool can also be used with multiple images (section A.2).

If the images are in a sequence, one of the images in the middle of the sequence can be used as a reference
(so it needs to be passed to the tools as the �rst image).

The ray intersection error, the fourth band in the point cloud �le, is computed as twice the mean of distances
from the optimally computed intersection point to the individual rays. For two rays, this agrees with the
intersection error for two-view stereo which is de�ned as the minimal distance between rays. For multi-view
stereo this error is much less amenable to interpretation as for two-view stereo, since the number of valid
rays corresponding to a given feature can vary across the image, which results in discontinuities in the
intersection error.

5.1.6 Diagnosing Problems

Once invoked, stereo proceeds through several stages that are detailed on page 74. Intermediate and �nal
output �les are generated as it goes. See Appendix C, page 105 for a comprehensive listing. Many of these
�les are useful for diagnosing and debugging problems. For example, as Figure 5.1 shows, a quick look at
some of the TIFF �les in the results/ directory provides some insight into the process.
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Perhaps the most accessible �le for assessing the quality of your results is the good pixel image,
(results/output-GoodPixelMap.tif). If this �le shows mostly good, gray pixels in the overlap area (the
area that is white in both the results/output-lMask.tif and results/output-rMask.tif �les), then
your results are just �ne. If the good pixel image shows lots of failed data, signi�ed by red pixels in the
overlap area, then you need to go back and tune your stereo.default �le until your results improve. This
might be a good time to make a copy of stereo.default as you tune the parameters to improve the results.

You should also know that whenever stereo, point2dem, and other executables are run, they create log
�les in given tool's results directory, containing a copy of the con�guration �le, the command that was run,
your system settings, and tool's console output. This will help track what was performed so that others in
the future can recreate your work.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable
versions of the intermediate results from the stereo correlation algorithm. disparitydebug converts infor-
mation in the disparity image �les into two TIFF images that contain horizontal and vertical components
of the disparity (i.e. matching o�sets for each pixel in the horizontal and vertical directions). There are ac-
tually three �avors of disparity map: the -D.tif, the -RD.tif, and -F.tif. You can run disparitydebug

on any of them. Each shows the disparity map at the di�erent stages of processing.

> disparitydebug results/output-F.tif

Figure 5.2: Disparity images pro-
duced using the disparitydebug

tool. The two images on the left are
the results/output-D-H.tif and
results/output-D-V.tif �les, which
are normalized horizontal and verti-
cal disparity components produced
by the disparity map initialization
phase. The two images on the right
are results/output-F-H.tif and
results/output-F-V.tif, which are the
�nal �ltered, sub-pixel-re�ned disparity
maps that are fed into the Triangulation
phase to build the point cloud image.
Since these MOC images were acquired
by rolling the spacecraft across-track,
most of the disparity that represents
topography is present in the horizontal
disparity map. The vertical disparity
map shows disparity due to �wash-
boarding,� which is not from topography
but from spacecraft movement. Note
however that the horizontal and vertical
disparity images are normalized indepen-
dently. Although both have the same
range of gray values from white to black,
they represent signi�cantly di�erent
absolute ranges of disparity.
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If the output H and V �les from disparitydebug look good, then the point cloud image is most likely ready
for post-processing. You can proceed to make a mesh or a DEM by processing results/output-PC.tif

using the point2mesh or point2dem tools, respectively.

Figure 5.2 shows the outputs of disparitydebug.

And a note on performance. If stereo_corr takes unreasonably long, it may have encountered a portion
of the image where, due to noise (such as clouds, shadows, etc.) the determined search range is much
larger than what it should be. The option --corr-timeout integer can be used to limit how long each
1024×1024 pixel tile can take. A good value here could be 300 (seconds) or more if your terrain is expected
to have large height variations.

5.2 Visualizing and Manipulating the Results

When stereo �nishes, it will have produced a point cloud image. At this point, many kinds of data products
can be built from the results/output-PC.tif point cloud �le.

Figure 5.3: The
results/output.osgb

�le displayed in the OSG
Viewer.

5.2.1 Building a 3D Model

If you wish to see the data in an interactive 3D browser, then you can generate a 3D object �le using the
point2mesh command (page 83). The resulting �le is stored in Open Scene Graph binary format [8]. It can
be viewed with osgviewer (the Open Scene Graph Viewer program, distributed with the binary version of
the Stereo Pipeline). The point2mesh program takes the point cloud �le and the left normalized image as
inputs:

> point2mesh results/output-PC.tif results/output-L.tif

> osgviewer results/output.osgb

The image displayed by osgviewer is shown in �gure 5.3.

When the osgviewer program starts, you may want to toggle the lighting with the `L' key, toggle texturing
with the 'T' key, and toggle wireframe mode with the 'W'. Press '?' to see a variety of other interactive
options.

5.2.2 Building a Digital Elevation Model

The point2dem program (page 79) creates a Digital Elevation Model (DEM) from the point cloud �le.
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> point2dem results/output-PC.tif

The resulting TIFF �le is map-projected and will contain georeferencing information stored as GeoTIFF
tags. You can specify a coordinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calcu-
lated for the Moon, Mars, or Earth).

> point2dem -r mars results/output-PC.tif

This product is suitable for scienti�c use, and can be imported into a variety of GIS platforms. However,
the resulting �le, results/output-DEM.tif, will have 32-bit �oating point pixels, and will not render well
in typical image viewers.

The point2dem program can also be used to orthoproject raw satellite imagery onto the DEM. To do this,
invoke point2dem just as before, but add the --orthoimage option and specify the use of the left image
�le as the texture �le to use for the projection:

> point2dem -r mars results/output-PC.tif --orthoimage results/output-L.tif

The texture �le must always be speci�ed after the point cloud �le. See �gure 5.4 on the right for the output
of this command.

If the DEM has holes, which can be inevitable, those holes will also show up in the orthoimage. They can
be �lled in using the option --orthoimage-hole-fill-len with a value passed to it.

The point2dem program is also able to accept output projection options the same way as the tools in
GDAL. Well-known EPSG, IAU2000 projections, and custom Proj4 strings can applied with the target
spatial reference set �ag, --t_srs. If the target spatial reference �ag is applied with any of the reference
spheroid options, the reference spheroid option will overwrite the datum de�ned in the target spatial
reference set. The following examples produce the same output.

> point2dem --t_srs IAU2000:49900 results/output-PC.tif

> point2dem --t_srs "+proj=longlat +a=3396190 +b=3376200"

results/output-PC.tif

The point2dem program can be used in many di�erent ways. The complete documentation is in section
A.4.

5.2.3 Fine-Tuning the Results

There are several options in Stereo Pipeline that, when adjusted, can help produce higher quality output.

During the �ltering step of stereo (section A.1.2), one can choose between several ways of removing outliers,
control how much hole-�lling should take place, if at all, and if to remove small isolated regions from the
output. This is detailed in section B.4. In the latest iterations of ASP, we suggest that at this stage
only the removal of small regions should take place, while outlier removal and hole-�lling be delayed until
triangulation and 3D terrain generation, as described in the next paragraph.

During the triangulation step, erroneous points in the output point cloud can be �ltered out based on a
range of distances from either the left camera or the planet center. More details are in section B.5. When
creating a 3D terrain model with point2dem, additional customizable outlier removal based on triangulation
error takes place, and small holes can be �lled in the DEM itself or the orthoimage. Lastly, boundary DEM
pixels (which are sometimes noisy) can be eroded using the dem_mosaic tool (section A.6) whose main
purpose is to mosaic DEMs.
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Figure 5.4: The image on
the left is a normalized DEM
(generated using point2dem's
-n option), which shows low
terrain values as black and
high terrain values as white.
The image on the right is
the left input image projected
onto the DEM (created using
the --orthoimage option to
point2dem).
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Figure 5.5: Example of using
pc_align to align a DEM ob-
tained using stereo from CTX
images to a set of MOLA
tracks. The MOLA points are
colored by the o�set error ini-
tially (left) and after pc align
was applied (right) to the ter-
rain model. The red dots in-
dicate more than 100 m of er-
ror and blue less than 5 m.
The pc_align algorithm de-
termined that by moving the
terrain model approximately
40 m south, 70 m west, and 175
m vertically, goodness of �t
between MOLA and the CTX
model was increased substan-
tially.

5.2.4 Alignment to Point Clouds From a Di�erent Source

Often the 3D terrain models output by stereo (point clouds and DEMs) can be intrinsically quite accurate
yet their actual position on the planet may be o� by several meters or several kilometers, depending on the
spacecraft. This can result from small errors in the position and orientation of the satellite cameras taking
the pictures.

ASP provides a tool named pc_align for aligning such 3D terrains to a much more accurately positioned (if
potentially sparser) dataset. Such datasets can be made up of ground control points (in the case of Earth),
or from laser altimetry instruments on satellites, such as ICESat/GLASS for Earth, LRO/LOLA on the
Moon, and MGS/MOLA on Mars. Under the hood, pc_align uses the Iterative Closest Point algorithm
(ICP) (both the point-to-plane and point-to-point �avors are supported).

The pc_align tool requires another input, an a priori guess for the maximum displacement we expect to
see as result of alignment, i.e., by how much the points are allowed to move when the alignment transform
is applied. If not known, a large (but not unreasonably so) number can be speci�ed. It is used to remove
most of the points in the source (movable) point cloud which have no chance of having a corresponding
point in the reference (�xed) point cloud.

Here is how pc_align can be called (the denser cloud is speci�ed �rst).

> pc_align --max-displacement 200 --datum D_MARS \

--save-inv-transformed-reference-points \

--csv-format '1:lon 2:lat 3:radius_m' \

stereo-PC.tif mola.csv

Figure 5.5 shows an example of using pc_align. The complete documentation for this program is in section
A.14.
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5.2.5 Creating DEMs Relative to the Geoid/Areoid

The DEMs generated using point2dem are in reference to a datum ellipsoid. If desired, the dem_geoid

program can be used to convert this DEM to be relative to a geoid/areoid on Earth/Mars respectively.
Example usage:

> dem_geoid results/output-DEM.tif

5.2.6 Converting to the LAS Format

If it is desired to use the stereo generated point cloud outside of ASP, it can be converted to the LAS
�le format, which is a public �le format for the interchange of 3-dimensional point cloud data. The tool
point2las can be used for that purpose (section A.13). Example usage:

> point2las --compressed -r Earth results/output-PC.tif

5.2.7 Generating Color Hillshade Maps

Once you have generated a DEM �le, you can use the colormap and hillshade tools to create colorized
and/or shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM �le to use. The colormap is
applied to the full range of the DEM, which is computed automatically. Alternatively you can specify your
own min and max range for the color map.

> colormap results/output-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM �le to use. You can control the azimuth and elevation
of the light source using the -a and -e options.

> hillshade results/output-DEM.tif -o hrad-shaded.tif -e 25

To create a colorized version of the shaded relief �le, specify the DEM and the shaded relief �le that should
be used:

> colormap results/output-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

See �gure 5.6 showing the images obtained with these commands.

5.2.8 Building Overlays for Moon and Mars Mode in Google Earth

The �nal program in the Stereo Pipeline package that this tutorial will address is image2qtree. This tool
was designed to create tiled, multi-resolution overlays for Google Earth. In addition to generating image
tiles, it produces a metadata tree in KML format that can be loaded from your local hard drive or streamed
from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image �les with georeferencing information (e.g.
grayscale or RGB GeoTIFF images). In this example, it can be used to process
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results/output-DEM-normalized.tif, results/output-DRG.tif, hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif.

These images were generated respectively by using point2dem with the -n option creating a normalized
DEM, the --orthoimage option to point2dem which projects the left image onto the DEM, and the images
created earlier with colormap.

> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Figure 5.7 shows the obtained KML �les in Google Earth.

Figure 5.6: The colorized DEM, the shaded relief image, and the colorized hillshade.
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Figure 5.7: The colorized hillshade DEM as a KML overlay.
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The Stereo Pipeline in Depth
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Chapter 6

Stereo Correlation

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We
start with an overview of the �ve stages of stereo reconstruction. Then we move into an in-depth discussion
and exposition of the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to
identify unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the
stereo.default �le (appendix B). For scientists and engineers who are using DEMs produced with the
Stereo Pipeline, this chapter may help to answer the question, �What is the Stereo Pipeline doing to the
raw data to produce this DEM?�

A related question that is commonly asked is, �How accurate is a DEM produced by the Stereo Pipeline?�
This chapter does not yet address matters of accuracy and error, however we have several e�orts underway
to quantify the accuracy of Stereo Pipeline-derived DEMs, and will be publishing more information about
that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a
multistage pipeline as depicted in Figure 6.1, and detailed in the following sections.

6.1 Pre-Processing

The �rst optional (but recommended) step in the process is least squares Bundle Adjustment, which is
described in detail in Chapter 7.

Next, the left and right images are roughly aligned using one of the four methods: (1) a homography
transform of the right image based on automated tie-point measurements, (2) A�ne epipolar transform
of both the left and right images (also based on tie-point measurements as earlier), the e�ect of which
is equivalent to rotating the original cameras which took the pictures, (3) a 3D rotation that achieves
epipolar recti�cation (only implemented for Pinhole sessions for missions like MER or K10) or (4) map-
projection of both the left and right images using the ISIS cam2map command, or through mapproject for
Digital Globe and GeoEye images (see section 4.2 for the latter). The �rst three options can be applied
automatically by the Stereo Pipeline when the alignment-method variable in the stereo.default �le is
set to affineepipolar, homography, or epipolar, respectively.

The latter option, running cam2map, cam2map4stereo.py, or mapproject must be carried out by the user
prior to invoking the stereo command. Map-projecting the images using ISIS eliminates any unusual
distortion in the image due to the unusual camera acquisition modes (e.g. pitching �ROTO� maneuvers
during image acquisition for MOC, or highly elliptical orbits and changing line exposure times for the High
Resolution Stereo Camera, HRSC). It also eliminates some of the perspective di�erences in the image
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Figure 6.1: Flow of data through the Stereo Pipeline.

pair that are due to large terrain features by taking the existing low-resolution terrain model into account
(e.g., the Mars Orbiter Laser Altimeter, MOLA; Lunar Orbiter Laser Altimeter, LOLA; National Elevation
Dataset, NED; or Uni�ed Lunar Coordinate Network, ULCN, 2005 models).

In essence, map-projecting the images results in a pair of very closely matched images that are as close to
ideal as possible given existing information. This leaves only small perspective di�erences in the images,
which are exactly the features that the stereo correlation process is designed to detect.

For this reason, we recommend map-projection for pre-alignment of most stereo pairs. Its only cost is
longer triangulation times as more math must be applied to work back through the transforms applied to
the images. In either case, the pre-alignment step is essential for performance because it ensures that the
disparity search space is bounded to a known area. In both cases, the e�ects of pre-alignment are taken
into account later in the process during triangulation, so you do not need to worry that pre-alignment will
compromise the geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to
bring them into the same dynamic range. Various options in the stereo.default �le a�ect whether or how
normalization is carried out, including individually-normalize and force-use-entire-range. Although
the defaults work in most cases, the use of these normalization steps can vary from data set to data set, so
we recommend you refer to the examples in Chapter 8 to see if these are necessary in your use case.

Finally, pre-processing can perform some �ltering of the input images (as determined by
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prefilter-mode) to reduce noise and extract edges in the images. When active, these �lters apply a kernel
with a sigma of prefilter-kernel-width pixels that can improve results for noisy images (prefilter-mode
must be chosen carefully in conjunction with cost-mode, see Appendix B). The pre-processing modes that
extract image edges are useful for stereo pairs that do not have the same lighting conditions, contrast, and
absolute brightness [24]. We recommend that you use the defaults for these parameters to start with, and
then experiment only if your results are sub-optimal.

6.2 Disparity Map Initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute
correspondences between pixels in the left image and pixels in the right image. The map of these corre-
spondences is called a disparity map. You can think of a disparity map as an image whose pixel locations
correspond to the pixel (u, v) in the left image, and whose pixel values contain the horizontal and vertical
o�sets (du, dv) to the matching pixel in the right image, which is (u + du, v + dv).

The correlation process attempts to �nd a match for every pixel in the left image. The only pixels skipped
are those marked invalid in the mask images. For large images (e.g. from HiRISE, Lunar Reconnaissance
Orbiter Camera, LROC, or WorldView), this is very expensive computationally, so the correlation process
is split into two stages. The disparity map initialization step computes approximate correspondences using
a pyramid-based search that is highly optimized for speed, but trades resolution for speed. The results of
disparity map initialization are integer-valued disparity estimates. The sub-pixel re�nement step takes these
integer estimates as initial conditions for an iterative optimization and re�nes them using the algorithm
discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box �lter-like accumulator
that reduces duplicate operations during correlation [28]; (2) a coarse-to-�ne pyramid based approach where
disparities are estimated using low-resolution images, and then successively re�ned at higher resolutions;
and (3) partitioning of the disparity search space into rectangular sub-regions with similar values of disparity
determined in the previous lower resolution level of the pyramid [28].

Naive correlation itself is carried out by moving a small, rectangular template window from the from left
image over the speci�ed search region of the right image, as in Figure 6.2. The �best� match is determined
by applying a cost function that compares the two windows. The location at which the window evaluates to
the lowest cost compared to all the other search locations is reported as the disparity value. The cost-mode
variable allows you to choose one of three cost functions, though we recommend normalized cross correlation
[19], since it is most robust to slight lighting and contrast variations between a pair of images. Try the
others if you need more speed at the cost of quality.

Our implementation of pyramid correlation is a little unique in that it is actually split into two levels
of pyramid searching. There is a output_prefix -D_sub.tif disparity image that is computed from the
greatly reduced input images *-L_sub.tif and output_prefix -R_sub.tif. Those �sub� images have their
size chosen so that their area is around 2.25 mega pixels, a size that is easily viewed on the screen unlike
the raw source imagery. The low-resolution disparity image then de�nes the per thread search range of the
higher resolution disparity, output_prefix -D.tif.

This solution is imperfect but comes from our model of multi-threaded processing. ASP processes individual
tiles of the output disparity in parallel. The smaller the tiles, the easier it is to distribute evenly among
the CPU cores. The size of the tile unfortunately limits the max number of pyramid levels we can process.
We've struck a balance where every 1024 by 1024 pixel area is processed individually in a tile. This practice
allows only 5 levels of pyramid processing. With the addition of the second tier of pyramid searching with
output_prefix -D_sub.tif, we are allowed to process beyond that limitation.

Any large failure in the low-resolution disparity image will be detrimental to the performance of the higher

41



Chapter 6

Figure 6.2: The correlation algorithm in disparity map initialization uses a sliding template window from
the left image to �nd the best match in the right image. The size of the template window can be adjusted
using the H_KERN and V_KERN parameters in the stereo.default �le, and the search range can be adjusted
using the {H,V}_CORR_{MIN/MAX} parameters.

resolution disparity. In the event that the low-resolution disparity is completely unhelpful, it can be skipped
by adding corr-seed-mode 0 in the stereo.default �le. This should only be considered in cases where
the texture in an image is completely lost when subsampled. An example would be satellite imagery of
fresh snow in the Arctic. Alternatively, output_prefix -D_sub.tif can be computed at a sparse set of
pixels at full resolution, as described in section 4.4.

An alternative to computing output_prefix -D.tif from sub-sampled images (corr-seed-mode 1) or
skipping it altogether (corr-seed-mode 0), is to compute it from a lower-resolution DEM of the area
(corr-seed-mode 2). In this situation, the low-resolution DEM needs to be speci�ed together with its
estimated error. See section B.2 for more detailed information as to how to specify these options. In our
experiments, if the input DEM has a resolution of 1 km, a good value for the DEM error is about 10 m, or
higher if the terrain is very variable.

6.2.1 Debugging Disparity Map Initialization

Never will all pixels be successfully matched during stereo matching. Though a good chunk of the image
should be correctly processed. If you see large areas where matching failed, this could be due to a variety
of reasons:

• In regions where the images do not overlap, there should be no valid matches in the disparity map.
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• Match quality may be poor in regions of the images that have di�erent lighting conditions, contrast,
or specular properties of the surface.

• Areas that have image content with very little texture or extremely low contrast may have an insuf-
�cient signal to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to di�erent image perspective, such as crater and canyon walls,
may exhibit poor matching performance. This could also be due to failure of the preprocessing step
in aligning the images. The correlator can not match images that are rotated di�erently from each
other or have di�erent scale/resolution.

Bad matches, often called �blunders� or �artifacts� are also common, and can happen for many of the same
reasons listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders,
but the e�ectiveness of these outlier rejection strategies does vary depending on the quality of the input
imagery.

When tuning up your stereo.default �le, you will �nd that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix -D.tif �le into a pair of normal images that contain the horizontal and vertical components
of disparity. You can open these in a standard image viewing application and see immediately which pixels
were matched successfully, and which were not. Stereo matching blunders are usually also obvious when
inspecting these images. With a good intuition for the e�ects of various stereo.default parameters and
a good intuition for reading the output of disparitydebug, it is possible to quickly identify and address
most problems.

6.2.2 Local Homography

Correlation works by decomposing the left image into tiles, and for each pixel in each tile �nding the
best-matching pixel in the right image.

Depending on user's choices, by this stage either the left or the right image (or both) may already be
transformed so that they are very similar, making the matching process more likely to succeed.

Whether that is the case or not, Stereo Pipeline can estimate, based on the low-resolution disparity
output_prefix -D_sub.tif, a local homography transform for every left image tile, which, when applied
to the right image, improves the similarity of the right image to the current left image tile. This option can
be turned on with the �ag use-local-homography.

This local homography transform comes in most useful when a global homography transform could not be
applied (for example, if interest point matching failed). The input low-resolution disparity can be computed
in several ways, as described earlier in the section.

6.3 Sub-pixel Re�nement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated
disparity value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel re�nement
stage based on the subpixel-mode setting.

The �rst mode is parabola-�tting sub-pixel re�nement (subpixel-mode 1). This technique �ts a 2D
parabola to points on the correlation cost surface in an 8-connected neighborhood around the cost value
that was the �best� as measured during disparity map initialization. The parabola's minimum can then be
computed analytically and taken as as the new sub-pixel disparity value.
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(a) Left Image (b) Parabola Subpixel Mode (c) Bayes EM Subpixel Mode

(d) Right Image (e) Parabola Hillshade (f) Bayes EM Hillshade

Figure 6.3: Left: Input images. Center: results using the parabola draft subpixel mode (subpixel-mode =

1). Right: results using the Bayes EM high quality subpixel mode (subpixel-mode = 2).

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as
pixel-locking: the sub-pixel disparities tend toward their integer estimates and can create noticeable �stair
steps� on surfaces that should be smooth [27, 29]. See for example Figure 6.3(b). Furthermore, the parabola
subpixel mode is not capable of re�ning a disparity estimate by more than one pixel, so although it produces
smooth disparity maps, these results are not much more accurate than the results that come out of the
disparity map initialization in the �rst place. However, the speed of this method makes it very useful as
a �draft� mode for quickly generating a DEM for visualization (i.e. non-scienti�c) purposes. It is also
bene�cial in the event that a user will simply downsample their DEM after generation in Stereo Pipeline.

For high quality results, we recommend subpixel-mode 2: the Bayes EM weighted a�ne adaptive window
correlator. This advanced method produces extremely high quality stereo matches that exhibit a high
degree of immunity to image noise. For example Apollo Metric Camera images are a�ected by two types of
noise inherent to the scanning process: (1) the presence of �lm grain and (2) dust and lint particles present
on the �lm or scanner. The former gives rise to noise in the DEM values that wash out real features, and
the latter causes incorrect matches or hard to detect blemishes in the DEM. Attenuating the e�ect of these
scanning artifacts while simultaneously re�ning the integer disparity map to sub-pixel accuracy has become
a critical goal of our system, and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that
can be rotated, scaled, and translated as it zeros in on the correct match in the right image. This adaptive
window is essential for computing accurate matches on crater or canyon walls, and on other areas with
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signi�cant perspective distortion due to foreshortening.

This a�ne-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm
in the �eld of computer vision [3]. We have extended this technique; developing a Bayesian model that
treats the Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework.
This statistical model also includes a Gaussian mixture component to model image noise that is the basis
for the robustness of our algorithm. We will not go into depth on our approach here, but we encourage
interested readers to read our papers on the topic [23, 5].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-
scale approach for sub-pixel re�nement. At each level of the pyramid, the algorithm is initialized with the
disparity determined in the previous lower resolution level of the pyramid, thereby allowing the subpixel
algorithm to shift the results of the disparity initialization stage by many pixels if a better match can
be found using the a�ne, noise-adapted window. Hence, this sub-pixel algorithm is able to signi�cantly
improve upon the results to yield a high quality, high resolution result.

Another option when run time is important is subpixel-mode 3: the simple a�ne correlator. This is essen-
tially the Bayes EM mode with the noise correction features removed in order to decrease the required run
time. In data sets with little noise this mode can yield results similar to Bayes EM mode in approximately
one �fth the time.

6.4 Triangulation

When running an ISIS session, the Stereo Pipeline uses geometric camera models available in ISIS [2].
These highly accurate models are customized for each instrument that ISIS supports. Each ISIS �cube�
�le contains all of the information that is required by the Stereo Pipeline to �nd and use the appropriate
camera model for that observation.

Other sessions such as DG (Digital Globe) or Pinhole, require that their camera model be provided as
additional arguments to the stereo command. Those camera models come in the form of an XML document
for DG and as *.pinhole, *.tsai, *.cahv, *.cahvor for Pinhole sessions. Those �les must be the third
and forth arguments or immediately follow after the 2 input images for stereo.

(a) Framing Camera Model (b) Pushbroom Camera Model

Figure 6.4: Most remote sensing cameras fall into two generic categories based on their basic geometry.
Framing cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture
images one scan line at a time, building up an image over the course of several seconds as the satellite
moves through the sky.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length,
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Figure 6.5: Once a disparity map has been generated and re�ned, it can be used in combination with the
geometric camera models to compute the locations of 3D points on the surface of Mars. This �gure shows
the position (at the origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor
at two points in time where it captured images in a stereo pair.

pixel size, and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters.
Taken together, these parameters are su�cient to �forward project� a 3D point in the world onto the image
plane of the sensor. It is also possible to �back project� from the camera's center of projection through a
pixel corresponding to the original 3D point.

Notice, however, that forward and back projection are not symmetric operations. One camera is su�cient
to �image� a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a
single camera and a pixel location x = (u, v), that is the image of an unknown 3D point P = (x, y, z), it
is only possible to determine that P lies somewhere along a ray that emanates from the camera's center of
projection through the pixel location x on the image plane (see Figure 6.4).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through
back projection, so we must bring more information to bear on the problem of uniquely reconstructing our
3D point. In order to determine P using back projection, we need two cameras that both contain pixel
locations x1 and x2 where P was imaged. Now, we have two rays that converge on a point in 3D space (see
Figure 6.5). The location where they meet must be the original location of P .

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing
information will e�ect the rays' positions as well. Instead, we take the closest point of intersection of the
two rays as the location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric
that measures how self-consistent our two camera models are for this point. You will learn in the next
chapter that this information, when computed and averaged over all reconstructed 3D points, can be a
valuable statistic for determining whether to carry out bundle adjustment. Distance between the two rays
at their closest intersection is recorded in the fourth channel of the point cloud �le, output-prefix -PC.tif.
This information can be brought to the same perspective as the output DEM by using the --error argument
on the point2dem command.

This error in the triangulation, the distance between two rays, is not the true accuracy of the DEM. It is
only another indirect measure of quality. A DEM with high triangulation error is always bad and should
have its images bundle-adjusted. A DEM with low triangulation error is at least self consistent but could
still be bad. A map of the triangulation error should only be interpreted as a relative measurement. Where
small areas are found with high triangulation error came from correlation mistakes and large areas of error
came from camera model inadequacies.
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Bundle Adjustment

7.1 Overview

Satellite position and orientation errors have a direct e�ect on the accuracy of digital elevation models
produced by the Stereo Pipeline. If they are not corrected, these uncertainties will result in systematic
errors in the overall position and slope of the DEM. Severe distortions can occur as well, resulting in
twisted or �taco shaped� DEMs, though in most cases these e�ects are quite subtle and hard to detect. In
the worst case, such as with old mission data like Voyager or Apollo, these gross camera misalignments can
inhibit Stereo Pipeline's internal interest point matcher and block auto search range detection.

Errors in camera position and orientation can be corrected using a process called bundle adjustment. Bundle
adjustment is the process of simultaneously adjusting the properties of many cameras and the 3D locations
of the objects they see in order to minimize the error between the estimated, back-projected pixel locations
of the 3D objects and their actual measured locations in the captured images.

This complex process can be boiled down to this simple idea: bundle adjustment ensures that the observa-
tions in multiple images of a single ground feature are self-consistent. If they are not consistent, then the
position and orientation of the cameras as well as the 3D position of the feature must be adjusted until
they are. This optimization is carried out along with thousands (or more) of similar constraints involving
many di�erent features observed in other images. Bundle adjustment is very powerful and versatile: it can
operate on just two overlapping images, or on thousands. It is also a dangerous tool. Careful consideration

Figure 7.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from
Apollo 15, Orbit 33, imagery. (a) Prior to bundle adjustment, large discontinuities can exist between
overlapping DEMs made from di�erent images. (b) After bundle adjustment, DEM alignment errors are
minimized and no longer visible.
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is required to insure and verify that the solution does represent reality.

Bundle adjustment can also take advantage of ground control points (GCPs), which are 3D locations of
features that are known a priori (often by measuring them by hand in another existing DEM). GCPs can
improve the internal consistency of your DEM or align your DEM to an existing data product. Finally,
even though bundle adjustment calculates the locations of the 3D objects it views, only the �nal properties
of the cameras are recorded for use by the Ames Stereo Pipeline. Those properties can be loaded into the
stereo program which uses its own method for triangulating 3D feature locations.

When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images
and the creation of DEMs. The bundle adjustment process described below should be completed prior to
running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users
who plan to create DEMs for scienti�c analysis and publication. Incorporating bundle adjustment into the
stereo work �ow not only results in DEMs that are more internally consistent, it is also the correct way to
co-register your DEMs with other existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from
sources such as laser altimeters. Hand-picked GCPs are the only way for ASP to register to those types of
sources.

7.2 Bundle adjustment using ASP

Recently, Stereo Pipeline started providing its own bundle adjustment tool, named bundle_adjust. Its
usage is described in section A.3.

Here is an example of using this tool on a couple of Apollo 15 images, and its e�ect on decreasing the stereo
triangulation error.

Running stereo without using bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_noadjust/run

Performing bundle adjustment.

bundle_adjust AS15-M-1134.cub AS15-M-1135.cub -o run_ba/run

Running stereo while using the bundle-adjusted camera models.

stereo AS15-M-1134.cub AS15-M-1135.cub run_adjust/run \

--bundle-adjust-prefix run_ba/run

A comparison of the two ways of doing stereo is shown in �gure 7.2.

7.3 Bundle adjustment using ISIS

In what follows we describe how to do bundle adjustment using ISIS's toolchain. It also serves to describe
bundle adjustment in more detail, which is applicable to other bundle adjustment tools as well, including
Stereo Pipeline's own tool.
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Figure 7.2: Illustration of the triangulation error map for a pair of images before (left) and after (right)
using Stereo Pipeline's bundle_adjust. Red and black colors suggest higher error.

In bundle adjustment, the position and orientation of each camera station are determined jointly with the
3D position of a set of image tie-points points chosen in the overlapping regions between images. Tie points,
as suggested by the name, tie multiple camera images together. Their physical manifestation would be a
rock or small crater than can be observed across more than one image.

Tie-points are automatically extracted using ISIS's autoseed and pointreg (alternatively one could use a
number of outside methods such as the famous SURF[4]). Creating a collection of tie points, called a control
network, is a three step process. First, a general geographic layout of the points must be decided upon.
This is traditionally just a grid layout that has some spacing that allows for about 20-30 measurements
to be made per image. This shows up in slightly di�erent projected locations in each image due to their
slight misalignments. The second step is to have an automatic registration algorithm try to �nd the same
feature in all images using the prior grid as a starting location. The third step is to manually verify all
measurements visually, checking to insure that each measurement is looking at the same feature.

Bundle Adjustment in ISIS is performed with the jigsaw executable. It generally follows the method
described in [30] and determines the best camera parameters that minimize the projection error given by
ǫ =

∑
k

∑
j(Ik − I(Cj , Xk))

2 where Ik are the tie points on the image plane, Cj are the camera parameters,
and Xk are the 3D positions associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward
projection) for a given camera and 3D point. To recap, it projects the 3D point, Xk, into the camera with
parameters Cj . This produces a predicted image location for the 3D point that is compared against the
observed location, Ik. It then reduces this error with the Levenberg-Marquardt algorithm (LMA). Speed
is improved by using sparse methods as described in Hartley and Zisserman [14], Konolige [15], and Chen
et al. [7].

Even though the arithmetic for bundle adjustment sounds clever, there are faults with the base implemen-
tation. Imagine a case where all cameras and 3D points were collapsed into a single point. If you evaluate
the above cost function, you'll �nd that the error is indeed zero. This is not the correct solution if the
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images were taken from orbit. Another example is if a translation was applied equally to all 3D points
and camera locations. This again would not a�ect the cost function. This fault comes from bundle adjust-
ment's inability to control the scale and translation of the solution. It will correct the geometric shape of
the problem, yet it cannot guarantee that the solution will have correct scale and translation.

ISIS attempts to �x this problem by adding two additional cost functions to bundle adjustment. First of
which is ǫ =

∑
j(C

initial
j − Cj)

2. This constrains camera parameters to stay relatively close to their initial
values. Second, a small handful of 3D ground control points can be chosen by hand and added to the error
metric as ǫ =

∑
k(X

gcp
k − Xk)

2 to constrain these points to known locations in the planetary coordinate
frame. A physical example of a ground control point could be the location of a lander that has a well known
location. GCPs could also be hand-picked points against a highly regarded and prior existing map such as
the THEMIS Global Mosaic or the LRO-WAC Global Mosaic.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment
to terminate. When updates to parameters become insigni�cantly small or when the error, ǫ, becomes
insigni�cantly small, then the algorithm has converged and the result is most likely as good as it will get.
However, the algorithm will also terminate when the number of iterations becomes too large in which case
bundle adjustment may or may not have �nished re�ning the parameters of the cameras.

7.3.1 Tutorial: Processing Mars Orbital Camera Imagery

This tutorial for ISIS's bundle adjustment tools is taken from [21] and [22]. These tools are not a product of
NASA nor the authors of Stereo Pipeline. They were created by USGS and their documentation is available

jicfv∆

jicfu∆

K
c

j

K
f

i

�u f
i
c

j

v f
i
c

j
�

� �u f
i
c

j

�v f
i
c

j
�

World frame

Camera frame

Image plane

Figure 7.3: A feature observation in bundle adjustment, from Moore et al. [20]
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at [6].

What follows is an example of bundle adjustment using two MOC images of Hrad Vallis. We use images
E02/01461 and M01/00115, the same as used in Chapter 3. These images are available from NASA's PDS
(the ISIS mocproc program will operate on either the IMQ or IMG format �les, we use the .imq below in
the example). For reference, the following ISIS commands are how to convert the MOC images to ISIS
cubes.

ISIS 3> mocproc from=e0201461.imq to=e0201461.cub mapping=no

ISIS 3> mocproc from=m0100115.imq to=m0100115.cub mapping=no

Note that the resulting images are not map-projected. Bundle adjustment requires the ability to project
arbitrary 3D points into the camera frame. The process of map-projecting an image dissociates the camera
model from the image. Map-projecting can be perceived as the generation of a new in�nitely large camera
sensor that may be parallel to the surface, a conic shape, or something more complex. That makes it
extremely hard to project a random point into the camera's original model. The math would follow the
transformation from projection into the camera frame, then projected back down to surface that ISIS uses,
then �nally up into the in�nitely large sensor. Jigsaw does not support this and thus does not operate on
map-projected imagery.

Before we can dive into creating our tie-point measurements we must �nish prepping these images. The
following commands will add a vector layer to the cube �le that describes its outline on the globe. It will
also create a data �le that describes the overlapping sections between �les.

ISIS 3> footprintinit from=e0201461.cub

ISIS 3> footprintinit from=m0100115.cub

ISIS 3> echo *cub | xargs -n1 echo > cube.lis

ISIS 3> findimageoverlaps from=cube.lis overlaplist=overlap.lis

At this point, we are ready to start generating our measurements. This is a three step process that requires
de�ning a geographic pattern for the layout of the points on the groups, an automatic registration pass, and
�nally a manual clean up of all measurements. Creating the ground pattern of measurements is performed
with autoseed. It requires a settings �le that de�nes the spacing in meters between measurements. For
this example, write the following text into a autoseed.def �le.

Group = PolygonSeederAlgorithm

Name = Grid

MinimumThickness = 0.01

MinimumArea = 1

XSpacing = 1000

YSpacing = 2000

End_Group

The minimum thickness de�nes the minimum ratio between the sides of the region that can have points
applied to it. A choice of 1 would de�ne a square and anything less de�nes thinner and thinner rectangles.
The minimum area argument de�nes the minimum square meters that must be in an overlap region. The
last two are the spacing in meters between control points. Those values were speci�cally chosen for this
pair so that about 30 measurements would be produced from autoseed. Having more control points just
makes for more work later on in this process. Run autoseed with the following instruction.

51



Chapter 7

Figure 7.4: A visualization of the features laid out by autoseed in qnet. Note that the marks do not cover
the same features between images. This is due to the poor initial spice data for MOC imagery.

ISIS 3> autoseed fromlist=cube.lis overlaplist=overlap.lis \

onet=control.net deffile=autoseed.def networkid=moc \

pointid=???? description=hrad_vallis

The next step is to perform auto registration of these features between the two images using pointreg.
This program also requires a settings �le that describes how to do the automatic search. Copy the text box
below into a autoRegTemplate.def �le.

Object = AutoRegistration

Group = Algorithm

Name = MaximumCorrelation

Tolerance = 0.7

EndGroup

Group = PatternChip

Samples = 21

Lines = 21

MinimumZScore = 1.5

ValidPercent = 80

EndGroup
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Group = SearchChip

Samples = 75

Lines = 1000

EndGroup

EndObject

The search chip de�nes the search range for which pointreg will look for matching imagery. The pattern
chip is simply the kernel size of the matching template. The search range is speci�c for this image pair.
The control network result after autoseed had a large vertical o�set in the ball park of 500 px. The large
misalignment dictated the need for the large search in the lines direction. Use qnet to get an idea for what
the pixel shifts look like in your stereo pair to help you decide on a search range. In this example, only one
measurement failed to match automatically. Here are the arguments to use in this example of pointreg.

ISIS 3> pointreg fromlist=cube.lis cnet=control.net \

onet=control_pointreg.net deffile=autoRegTemplate.def

The third step is to manually edit the control and verify the measurements in qnet. Type qnet in the
terminal and then open cube.lis and lastly control_pointreg.net. From the Control Network Navigator
window, click on the �rst point listed as 0001. That opens a third window called the Qnet Tool. That
window will allow you to play a �ip animation that shows alignment of the feature between the two images.
Correcting a measurement is performed by left clicking in the right image, then clicking Save Measure, and
�nally �nishing by clicking Save Point.

In this tutorial, measurement 0025 ended up being incorrect. Your number may vary if you used di�erent
settings than the above or if MOC spice data has improved since this writing. When �nished, go back to
the main Qnet window. Save the �nal control network as control_qnet.net by clicking on File, and then
Save As.

Once the control network is �nished, it is �nally time to start bundle adjustment. Here's what the call to
jigsaw looks like:

ISIS 3> jigsaw fromlist=cube.lis update=yes twist=no radius=yes \

cnet=control_qnet.net onet=control_ba.net

The update option de�nes that we would like to update the camera pointing, if our bundle adjustment
converges. The twist=no says to not solve for the camera rotation about the camera bore. That property
is usually very well known as it is critical for integrating an image with a line-scan camera. The radius=yes
means that the radius of the 3D features can be solved for. Using no will force the points to use height
values from another source, usually LOLA or MOLA.

The above command will spew out a bunch of diagnostic information from every iteration of the optimization
algorithm. The most important feature to look at is the sigma0 value. It represents the mean of pixel
errors in the control network. In our run, the initial error was 1065 px and the �nal solution had an error
of 1.1 px.

Producing a DEM using the newly created camera corrections is the same as covered in the Tutorial on
page 15. When using jigsaw, it modi�es a copy of the spice data that is stored internally to the cube �le.
Thus when we want to create a DEM using the correct camera geometry, no extra information needs to be
given to stereo since it is already contained in the �le. In the event a mistake has been made, spiceinit
will overwrite the spice data inside a cube �le and provide the original uncorrected camera pointing.

ISIS 3> stereo E0201461.cub M0100115.cub bundled/bundled
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Figure 7.5: A visualization of the features after manual editing in qnet. Note that the marks now appear
in the same location between images.
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Data Processing Examples

This chapter showcases a variety of results that are possible when processing di�erent data sets with the
Stereo Pipeline. It is also a shortened guide that shows the commands used to process speci�c mission
data. There is no de�nitive method yet for making elevation models as each stereo pair is unique. We hope
that the following sections serve as a cookbook for strategies that will get you started in processing your
own data. We recommend that you second check your results against another source.

8.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions,
and signi�cant surface coverage overlap are best suited for creating terrain models. Depending on the
characteristics of the mission data set and the individual images, the degree of acceptable variation will
di�er. Signi�cant di�erences between image characteristics increases the likelihood of stereo matching error
and artifacts, and these errors will propagate through to the resulting data products.

Although images do not need to be map-projected before running the stereo program, we recommend
that you do run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large
topographic variation (and therefore large disparity di�erences across the scene, e.g., Valles Marineris).
Map-projection is especially necessary when processing HiRISE images. This removes the large disparity
di�erences between HiRISE images and leaves only the small detail for the Stereo Pipeline to compute.
Remember that ISIS can work backwards through a map-projection when applying the camera model, so
the geometric integrity of your images will not be sacri�ced if you map-project �rst.

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever
fashion suits your purposes. If there are photometric problems with the images, those photometric defects
can be misinterpreted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had
SPICE data associated by running ISIS's spiceinit program run on them �rst.

8.1.1 Combating Long Run Times

The factor that predominantly determines running time in the Stereo Pipeline is the size of the search space
considered by the correlation algorithm. This is set in the stereo.default �le using the corr-search

parameter. If you comment that parameter out (either by putting a `#' at the beginning of their line or
deleting them from your stereo.default �le), the Stereo Pipeline will try to automatically determine the
search range for you, but this does not always work perfectly. A spurious bad match can lead the pipeline
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to select a search range that is far too large, and performance will su�er as a result. If you know (or
can estimate) the range of horizontal and vertical o�sets you expect to see between the two images, then
you may want to try setting the search range yourself in your stereo.default using the aforementioned
parameters.

More generally, here are several strategies that tend to keep the search range small and run-times low:

1. You can instruct ASP to work only on a subregion of the left input image (section A.1). Run times will
be much lower (minutes instead of days), and you can quickly tune parameters in the stereo.default
�le before scaling up to the full image.

2. You can use the parallel_stereo tool to distribute the computations over multiple machines (section
A.2).

3. A solution speci�c to ISIS imagery is to crop your stereo pair (using the ISIS crop command) to a
small region of interest within a large stereo pair.

4. The image pair can be subsampled. For ISIS imagery, the ISIS reduce command can be used, while
for Digital Globe data one can invoke the dg_mosaic tool (section A.8). With subsampling, you
are trading resolution for speed, so this probably only makes sense for debugging or �previewing� 3D
terrain. That said, subsampling will tend to increase the signal to noise ratio, so it may also be helpful
for obtaining 3D terrain out of noisy, low quality images.

These options of cropping or reducing the resolution of the source imagery are only easily achieved
with ISIS or Digital Globe data. For Pinhole or RPC sessions, users may reduce the image size using
for example GDAL, but then the camera models will need to be adjusted manually. This is a unique
problem for each camera model and thus will not be discussed here.

5. You can map-project the images. For Digital Globe images one can use mapproject (section 4.2),
while for ISIS data the ISIS cam2map command or the cam2map4stereo.py program provided with
the Stereo Pipeline can be applied. If you project both images into the same map-projection and
same pixel scale, then they will be aligned modulo uncertainty in spacecraft telemetry (typically tens
or hundreds of meters of error when the image is projected onto the ground). By default cam2map will
also project the image onto the local elevation model (MOLA or LOLA), which removes the stereo
disparity in the images that is due to coarse topography. The resulting image pair has only small
position o�sets and �ne 3D detail left to discover, so the search range can be kept very small and run
times can be improved. The Stereo Pipeline will keep track of how these map-projections a�ect the
camera model, and take them into account when building up the 3D mesh via triangulation. If you
use cam2map, be sure that your stereo.default's alignment-method is set to none. Note also that
the --lat and --lon arguments to cam2map4stereo.py can be used to crop your stereo images, and
the --resolution argument can be used to subsample them.

If you are working with very large images, we highly recommend cropping or subsampling and working
with smaller sized images while you �ne-tune the parameters in the stereo.default �le, and once you get
satisfactory results to apply those parameters to the full images.

8.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures
can be several gigabytes each. Working with this data requires patience as it will take time.
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One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged
side by side with some vertical o�sets. These o�sets mean that the CCDs will view some of the same terrain
but at a slightly di�erent time and a slightly di�erent angle. Mosaicking the CCDs together to a single
image is not a simple process and involves living with some imperfections.

One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability.
Instead, the HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script
in use by the HiRISE team that works forward from the team-produced `balance' cubes, which provides
a de-jittered, noproj'ed mosaic of a single observation, which is perfectly suitable for use by the Stereo
Pipeline (this script was originally engineered to provide input for SOCET SET). However, the `balance'
cubes are not available to the general public, and so we include a program (hiedr2mosaic.py, written in
Python) that will take PDS available HiRISE EDR products and walk through the processing steps required
to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective
of the RED5 CCD. From there, hijitreg is performed to work out the relative o�sets between CCDs.
Finally the CCDs are mosaicked together using the average o�set listed from hijitreg using the handmos
command. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis

hical # Calibrate

histitch # Assemble whole-CCD images from the channels

spiceinit

spicefit # For good measure

noproj # Project all images into perspective of RED5

hijitreg # Work out alignment between CCDs

handmos # Mosaic to single file

To use our script, �rst go to the directory where you have downloaded the HiRISE's RED EDR IMG �les.
You can run the hiedr2mosaic.py program without any arguments to view a short help statement, with
the -h option to view a longer help statement, or just run the program on the EDR �les like so:

hiedr2mosaic.py *.IMG

If you have more than one observation's worth of EDRs in that directory, then limit the program to just
one observation's EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems,
try using the -k option to retain all of the intermediary image �les to help track down the issue. The
hiedr2mosaic.py program will create a single mosaic �le with the extension .mos_hijitreged.norm.cub.
Be warned that the operations carried out by hiedr2mosaic.py can take many hours to complete on the
very large HiRISE images.

8.2.1 Columbia Hills

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the �oor of Gusev Crater and
cover the area where the MER Spirit landed and has roved, including the Columbia Hills.

Commands

Download all 20 of the RED EDR .IMG �les for each observation.
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(a) 3D Rendering (b) KML Screenshot

Figure 8.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the
Columbia Hills.

ISIS 3> hiedr2mosaic.py PSP_001513_1655_RED*.IMG

ISIS 3> hiedr2mosaic.py PSP_001777_1650_RED*.IMG

ISIS 3> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub

ISIS 3> stereo PSP_001513_1655.map.cub \

PSP_001777_1650.map.cub result/output

stereo.default

The stereo.default example �le (appendix B) should apply well to HiRISE. Just set alignment-method to
none if using map-projected imagery. If you are not using map-projected imagery, set alignment-method
to homography or affineepipolar. The corr-kernel value can usually be safely reduced to 21 pixels to
resolve �ner detail and faster processing for images with good contrast.

8.3 Mars Reconnaissance Orbiter CTX

Context Camera (CTX) is a moderate camera to work with. Processing times for CTX can be pretty long
when using Bayes EM subpixel re�nement. Otherwise the disparity between images is relatively small,
allowing e�cient computation and a reasonable processing time.
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8.3.1 North Terra Meridiani

In this example, we use map-projected images. Map-projecting the images is the most reliable way
to align the images for correlation. However when possible, use non-map-projected images with the
alignment-method affineepipolar option. This greatly reduces the time spent in triangulation. For all
cases using linescan cameras, triangulation of map-projected images is 10x slower than non-map-projected
images.

This example is distributed in the examples/CTX directory.

Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG
from the PDS.

ISIS 3> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub

ISIS 3> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub

ISIS 3> spiceinit from=P02_001981_1823.cub

ISIS 3> spiceinit from=P03_002258_1817.cub

ISIS 3> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub

ISIS 3> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

you can also optionally run ctxevenodd on the cal.cub �les, if needed
ISIS 3> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub

ISIS 3> stereo P02_001981_1823.map.cub P03_002258_1817.map.cub results/out

stereo.default

The stereo.default example �le (appendix B) works generally well with all CTX pairs. Just set alignment-method
to homography or affineepipolar.

(a) 3D Rendering (b) KML Screenshot

Figure 8.2: Example output possible with the CTX imager aboard MRO.
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8.4 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Chapter 3, we showed you how to process a narrow angle MOC stereo
pair that covered a portion of Hrad Vallis. In this section we will show you more examples, some of which
exhibit a problem common to stereo pairs from linescan imagers: �spacecraft jitter� is caused by oscillations
of the spacecraft due to the movement of other spacecraft hardware. All spacecraft wobble around to some
degree but some are particularly susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan
camera images. This e�ect can be very subtle or quite pronounced, so it is important to check your
data products carefully for any sign of this type of artifact. The following examples will show the typical
distortions created by this problem.

Note that the science teams of HiRISE and Lunar Reconnaissance Orbiter Camera (LROC) are actively
working on detecting and correctly modeling jitter in their respective SPICE data. If they succeed in this,
the distortions will still be present in the raw imagery, but the jitter will no longer produce ripple artifacts
in the DEMs produced using ours or other stereo reconstruction software.

8.4.1 Ceraunius Tholus

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This
DEM crosses the volcano's caldera.

(a) 3D Rendering (b) KML Screenshot

Figure 8.3: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding
artifacts due to spacecraft �jitter.�

Commands

Download the M08/06047 and R07/01361 images from the PDS.

ISIS 3> moc2isis f=M0806047.img t=M0806047.cub
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ISIS 3> moc2isis f=R0701361.img t=R0701361.cub

ISIS 3> spiceinit from=M0806047.cub

ISIS 3> spiceinit from=R0701361.cub

ISIS 3> cam2map4stereo.py M0806047.cub R0701361.cub

ISIS 3> stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all MOC-NA pairs. Just set
alignment-method to none when using map-projected imagery. If the images are not map-projected,
use homography or affineepipolar.

8.5 Mars Exploration Rovers MER

The MER rovers have several cameras on board and they all seem to have a stereo pair. With ASP you
are able to process the PANCAM, NAVCAM, and HAZCAM camera imagery. ISIS has no telemetry or
camera intrinsic supports for these images. That however is not a problem as their raw imagery contains
the cameras' information in JPL's CAHV, CAHVOR, and CHAVORE formats.

These cameras are all variations of a simple pinhole camera model so they are processed with ASP in the
PINHOLE session instead of the usual ISIS. ASP only supports creating of point clouds. The *-PC.tif is a
raw point cloud with the �rst 3 channels being XYZ in the rover site's coordinate frame. We don't support
the creation of DEMs from these images and that is left as an exercise for the user.

8.5.1 PANCAM, NAVCAM, HAZCAM

All of these cameras are processed the same way. I'll be showing 3D processing of the front hazard cams. The
only new things in the pipeline is the new executable mer2camera along with the use of alignment-method
epipolar. This example is also provided in the MER data example directory.
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(a) Rectified Input (b) Output Point Cloud

Figure 8.4: Example output possible with the front hazard cameras.

Commands

Download 2f194370083e�ap00p1214l0m1.img and 2f194370083e�ap00p1214r0m1.img from the PDS.

ISIS 3> mer2camera 2f194370083effap00p1214l0m1.img

ISIS 3> mer2camera 2f194370083effap00p1214r0m1.img

ISIS 3> stereo 2f194370083effap00p1214l0m1.img 2f194370083effap00p1214r0m1.img \

2f194370083effap00p1214l0m1.cahvore 2f194370083effap00p1214r0m1.cahvore \

fh01/fh01

stereo.default

The default stereo settings will work but change the following options. The universe option �lters out
points that are not triangulated well because they are too close robot's hardware or are extremely far away.

additional settings for MER
alignment-method epipolar

force-use-entire-range

# This deletes points that are too far away

# from the camera to truly triangulate.

universe-center Camera

near-universe-radius 0.7

far-universe-radius 80.0
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8.6 Lunar Reconnaissance Orbiter LROC NAC

8.6.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts
of Apollo 17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing
on the Lee-Lincoln scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible
sign of a deep fault.

(a) 3D Rendering (b) KML Screenshot

Figure 8.5: Example output possible with a LROC NA stereo pair, using both CCDs from each observation
courtesy of the lronac2mosaic.py tool.

Commands

Download the EDRs for the left and right CCDs for observations M104318871 and M104318871. Alterna-
tively you can search by original IDs of 2DB8 and 4C86 in the PDS.

All ISIS preprocessing of the EDRs is performed via the lronac2mosaic.py command. This runs lronac2isis,
lronaccal, lronacecho, spiceinit, noproj, and handmos to create a stitched unprojected image for a sin-
gle observation. In this example we don't map-project the images as ASP can usually get good results.
More aggressive terrain might require an additional cam2map4stereo.py step.

ISIS 3> lronac2mosaic.py M104318871LE.img M104318871RE.img

ISIS 3> lronac2mosaic.py M104311715LE.img M104311715RE.img

ISIS 3> stereo M104318871LE*.mosaic.norm.cub M104311715LE*.mosaic.norm.cub \

result/output --alignment-method affineepipolar
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stereo.default

The defaults work generally well with LRO-NAC pairs, so you don't need to provide a stereo.default
�le. Map-projecting is optional. When map-projecting the images use alignment-method none, otherwise
use alignment-method affineepipolar. Better map-project results can be achieved by projecting on a
higher resolution elevation source like the WAC DTM. This is achieved using the ISIS command demprep

and attaching to cube �les via spiceinit's SHAPE and MODEL options.

8.7 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can
be used for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They
produce consistent, excellent results.

The scans performed by ASU are su�ciently detailed to exhibit �lm grain at the highest resolution. The
amount of noise at the full resolution is not helpful for the correlator, so we recommend subsampling the
images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be
released into the PDS for general public usage.

8.7.1 Ansgarius C

Ansgarius C is a small crater on the west edge of the far side of the Moon near the equator. It is east of
Kapteyn A and B.

(a) 3D Rendering (b) KML Screenshot

Figure 8.6: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.
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Commands

Process Apollo TIFF �les into ISIS.

ISIS 3> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4

ISIS 3> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4

ISIS 3> spiceinit from=sub4-AS15-M-2380.cub

ISIS 3> spiceinit from=sub4-AS15-M-2381.cub

ISIS 3> stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output

stereo.default

The stereo.default example �le (appendix B) works generally well with all Apollo pairs. Just set alignment-method
to homography or affineepipolar.
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8.8 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support
for processing ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a
camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that
one usually has to settle with images that are not ideal: di�erent lighting, little perspective change, and
little or no stereo parallax. So far we have had little success with Cassini's data, but nonetheless we provide
this example as a potential starting point.

8.8.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example
shows, at the top right of both images, a giant impact basin named Tirawa that is 220 miles across. The
bright white area south of Tirawa is ejecta from a new crater. The lack of texture in this area poses a
challenge for our correlator. The results are just barely useful: the Tirawa impact can barely be made out
in the 3D data while the new crater and ejecta become only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) �les from the
PDS.

ISIS 3> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub

ISIS 3> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub

ISIS 3> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub

ISIS 3> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub

ISIS 3> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the problem

ISIS 3> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub

ISIS 3> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub

ISIS 3> spiceinit from=N1511700120_1.norm.cub

ISIS 3> spiceinit from=W1567133629_1.norm.cub

ISIS 3> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub

ISIS 3> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \

ISIS 3> to=W1567133629_1.map.cub matchmap=true

ISIS 3> stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea
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(a) Original Left Image (b) Original Right Image

(c) Map-Projected Left (d) 3D Rendering

Figure 8.7: Example output of what is possible with Cassini's ISS NAC
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stereo.default

stereo.default for Cassini ISS
### PREPROCESSING

alignment-method none

force-use-entire-range

individually-normalize

### CORRELATION

prefilter-mode 2

prefilter-kernel-width 1.5

cost-mode 2

corr-kernel 25 25

corr-search -55 -2 -5 10

subpixel-mode 3

subpixel-kernel 21 21

### FILTERING

rm-half-kernel 5 5

rm-min-matches 60 # Units = percent

rm-threshold 3

rm-cleanup-passes 1

8.9 Digital Globe Imagery

Processing of Digital Globe images is described extensively in the tutorial in chapter 4.

8.10 GeoEye and Astrium Imagery / RPC Imagery

GeoEye provides imagery from Ikonos and the two GeoEye satellites. Astrium provides imagery from SPOT
and Pleiades satellites. Both companies provide only Rational Polynomial Camera (RPC) models. RPC
represents four 20-element polynomials that map geodetic coordinates to image coordinates. Since they are
easy to implement, RPC represents a universal camera model and can be had from many imaging providers;
Digital Globe also provides them. The only downside is that it has less precision in our opinion compared
to the linear camera model provided by Digital Globe. For GeoEye and Astrium, the only option is using
RPC.

Our RPC read driver is GDAL. If the command gdalinfo can identify the RPC information inside the
headers of your �les, ASP will likely be able to see it as well. This means that sometimes we can get
away with only providing a left and right image, with no extra �les containing camera information. This is
speci�cally the case for GeoEye.

You can download an example stereo pair from GeoEye's website at [11]. When we accessed the site, we
downloaded a GeoEye-1 image of Hobart, Australia. As previously stated in the Digital Globe section,
these types of images are not ideal for ASP. This is both a forest and a urban area which makes corre-
lation di�cult. ASP was designed more for modeling bare rock and ice. Any results we produce in other
environments is a bonus but is not our objective.
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Figure 8.8: Example colorized height map and ortho image output.

Commands

> stereo -t rpc po_312012_pan_0000000.tif po_312012_pan_0010000.tif geoeye/geoeye

In case the image �les do not contain the RPC models, separate XML �les having this information need to
be provided, as done for Digital Globe images (section 4.1).

Currently, stereo using RPC camera models cannot be performed if the input images are map-projected,
as it is possible with Digital Globe images with linear camera models (section 4.2).

stereo.default

The stereo.default example �le (appendix B) works generally well with all GeoEye pairs. Just set alignment-method
to affineepipolar or homography.

8.11 Dawn (FC) Framing Camera

This is a NASA mission to visit two of the largest objects in the asteroid belt, Vesta and Ceres. The
framing camera on board Dawn is quite small and packs only a resolution of 1024x1024 pixels. This means
processing time is extremely short. To its bene�t, it seems that the mission planners leave the framing
camera on taking shots quite rapidly. On a single pass, they seem to usually take a chain of FC images
that have a high overlap percentage. This opens the idea of using ASP to process not only the sequential
pairs, but also the wider baseline shots. Then someone could potentially average all the DEMs together to
create a more robust data product.

For this example, we downloaded the images

FC21A0010191_11286212239F1T.IMG and FC21A0010192_11286212639F1T.IMG

which show the Cornelia crater. We found these images by looking at the popular anaglyph shown on the
Planetary Science Blog [16].

Commands

First you must download the Dawn FC images from PDS.
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Figure 8.9: Example colorized height map and ortho image output.

ISIS3 > dawnfc2isis from=FC21A0010191_11286212239F1T.IMG \

to=FC21A0010191_11286212239F1T.cub

ISIS3 > dawnfc2isis from=FC21A0010192_11286212639F1T.IMG \

to=FC21A0010192_11286212639F1T.cub

ISIS3 > spiceinit from=FC21A0010191_11286212239F1T.cub

ISIS3 > spiceinit from=FC21A0010192_11286212639F1T.cub

ISIS3 > stereo FC21A0010191_11286212239F1T.cub \

FC21A0010192_11286212639F1T.cub stereo/stereo

ISIS3 > point2dem stereo-PC.tif --orthoimage stereo-L.tif \

--t_srs "+proj=eqc +lat_ts=-11.5 +a=280000 +b=229000 +units=m"

stereo.default

The stereo.default example �le (appendix B) works well for this stereo pair. Just set alignment-method to
affineepipolar or homography.
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Tools

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline,
and a summary of their command line options.

A.1 stereo

The stereo program is the primary tool of the Ames Stereo Pipeline. It takes a stereo pair of images that
overlap and creates an output point cloud image that can be processed into a visualizable mesh or a DEM
using point2mesh (section A.5) and point2dem (section A.4), respectively.

Usage:

ISIS 3> stereo [options] <images> [<cameras>] output_file_prefix

Example (for ISIS):

stereo file1.cub file2.cub results/run

For ISIS, a .cub �le has both image and camera information, as such no separate camera �les are speci�ed.

Example (for Digital Globe Earth images):

stereo file1.tif file2.tif file1.xml file2.xml results/run

Multiple input images are also supported (section 5.1.5).

This tool is is primarily designed to process USGS ISIS .cub �les and Digital Globe data. However,
Stereo Pipeline does have the capability to process other types of stereo image pairs (e.g., image �les with a
CAHVOR camera model from the NASA MER rovers). If you would like to experiment with these features,
please contact us for more information.

The output_file_prefix is prepended to all output data �les. For example, setting output_file_prefix

to `out' will yield �les with names like out-L.tif and out-PC.tif. To keep the Stereo Pipeline re-
sults organized in sub-directories, we recommend using an output pre�x like `results-10-12-09/out' for
output_file_prefix . The stereo program will create a directory called results-10-12-09/ and place
�les named out-L.tif, out-PC.tif, etc. in that directory.
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Table A.1: Command-line options for stereo

Option Description

--help|-h Display the help message

--threads integer(=0) Set the number of threads to use. 0 means
use as many threads as there are cores.

--session-type|-t pinhole|isis|dg|rpc Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically by the �le extension.

--stereo-file|-s filename(=./stereo.default) De�ne the stereo.default �le to use

--left-image-crop-win xoff yoff xsize ysize Do stereo in a sub-region of the left image
[default: use the entire image].

--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this
stage).

--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage
right before this value).

--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).

More information about the stereo.default con�guration �le can be found in Appendix B on page 99. stereo
creates a set of intermediate �les, they are described in Appendix C on page 105.

A.1.1 Entry Points

The stereo -e number option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be useful when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) normalizes the two images and aligns them by locating interest points and matching
them in both images. The program is designed to reject outlying interest points. This stage writes out the
pre-aligned images and the image masks.

Stage 1 (Disparity Map Initialization) performs pyramid correlation and builds a rough disparity map that
is used to seed the sub-pixel re�nement phase.

Stage 2 (Sub-pixel Re�nement) performs sub-pixel correlation that re�nes the disparity map.

Stage 3 (Outlier Rejection and Hole Filling) performs �ltering of the disparity map and (optionally) �lls in
holes using an inpainting algorithm. This phase also creates a �good pixel� map.

Stage 4 (Triangulation) generates a 3D point cloud from the disparity map.

A.1.2 Decomposition of Stereo

The stereo executable is a python script that makes calls to separate C++ executables for each entry
point.

Stage 0 (Preprocessing) calls stereo_pprc. Multi-threaded.

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multi-threaded.

Stage 2 (Sub-pixel Re�nement) class stereo_rfne. Multi-threaded.

Stage 3 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multi-threaded.

Stage 4 (Triangulation) calls stereo_tri. Multi-threaded, except for ISIS input data.
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All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs
on a cluster may �nd it advantageous to call these executables in their own manner. An example would
be to run stages 0-3 in order for each stereo pair. Then run several sessions of stereo_tri since it is
single-threaded for ISIS.

It is important to note that each of the C++ stereo executables invoked by stereo have their own command-
line options. Those options can be passed to stereo which will in turn pass them to the appropriate
executable. By invoking each executable with no options, it will display the list of options it accepts.

As explained in more detail in section 5.1.2, each such option has the same syntax as used in stereo.default,
while being prepended by a double hyphen (--). A command line option takes precedence over the same
option speci�ed in stereo.default. Chapter B documents all options for the individual sub-programs.

A.2 parallel_stereo

The parallel_stereo program is a modi�cation of stereo designed to distribute the stereo processing
over multiple computing nodes. It uses GNU Parallel to manage the jobs, a tool which is distributed along
with Stereo Pipeline. It expects that all nodes can connect to each other using ssh without password.
parallel_stereo can also be useful when processing extraterrestial data on a single computer. This is
because ISIS camera models are restricted to a single thread, but parallel_stereo can run multiple
processes in parallel to reduce computation times.

At the simplest, parallel_stereo can be invoked exactly like stereo, with the addition of the list of nodes
to use (if using multiple nodes).

parallel_stereo --nodes-list machines.txt <other stereo options>

If your jobs are launched on a cluster or supercomputer, the name of the �le containing the list of nodes
may exist as an environmental variable. For example, on NASA's Pleiades Supercomputer, which uses the
Portable Batch System (PBS), the list of nodes can be retrieved as $PBS_NODEFILE.

It is important to note that when invoking this tool only stages 1, 2, and 4 of stereo (section A.1.2) are
spread over multiple machines, with stages 0 and 3 using just one node, as they require global knowledge
of the data. In addition, not all stages of stereo bene�t equally from parallelization. Most likely to gain are
stages 1 and 2 (correlation and re�nement) which are the most computationally expensive.

For these reasons, while parallel_stereo can be called to do all stages of stereo generation from start to
�nish in one command, it may be more resource-e�cient to invoke it using a single node for stages 0 and
3, many nodes for stages 1 and 2, and just a handful of nodes for stage 4 (triangulation). For example, to
invoke the tool only for stage 2, one uses the options:

--entry-point 2 --stop-point 3

parallel_stereo accepts the following options (any additional options given to it will be passed to the
stereo executables for each stage).

Table A.2: Command-line options for parallel_stereo

Options Description
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--help|-h Display the help message.

--nodes-list filename The list of computing nodes, one per line. If
not provided, run on the local machine.

--entry-point|-e integer(=0 to 4) Stereo Pipeline entry point (start at this
stage).

--stop-point|-e integer(=1 to 5) Stereo Pipeline stop point (stop at the stage
right before this value).

--corr-seed-mode integer(=0 to 3) Correlation seed strategy (section B.2).

A.2.1 Advanced usage

The parallel_stereo tool tries to take advantage of its inside knowledge of the individual stereo sub-
programs to decide how many threads and processes to use at each stage, and by default, it it will try to
use all nodes to the fullest.

The advanced user can try to gain �ner-level control of the tool, as described below. This may not necessarily
result in improved performance compared to using the default settings.

As an example of using the advanced options, assume that we would like to launch the re�nement and
�ltering steps only (stages 2 and 3). We will distribute the re�nement over a number of nodes, using 4
processes on each node, with each process creating 16 threads. For the �ltering stage, which is done in one
process on one machine, we want to use 32 threads. The appropriate command is then:

parallel_stereo --nodes-list machines.txt --processes 4 --threads-multiprocess 16 \

--threads-singleprocess 32 --entry-point 2 --stop-point 4 <other stereo options>

To better take advantage of these options, the user should know the following. parallel_stereo starts a
process for every image block, whose size is by default 2048× 2048 (job-size-w by job-size-h). On such
a block, the correlation, and subpixel re�nement stages will use at most 4 and 64 threads respectively (1
and 16 threads for each 1024 × 1024 tile). Triangulation will use at most 64 threads as well, except for
ISIS cameras, when it is single-threaded due to the limitations of ISIS (we account for the latter when the
number of threads and processes are decided automatically, but not when these advanced options are used).

Table A.3: Advanced options for parallel_stereo

Options Description

--job-size-w integer(=2048) Pixel width of input image tile for a single
process.

--job-size-h integer(=2048) Pixel height of input image tile for a single
process.

--processes integer The number of processes to use per node.

--threads-multiprocess integer The number of threads to use per process.

--threads-singleprocess integer The number of threads to use when running
a single process (for pre-processing and �lter-
ing).
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A.3 bundle_adjust

The bundle_adjust program performs bundle adjustment on a given set of images and cameras. An
introduction to bundle adjustment can be found in chapter 7, with an example of how to use this program
in section 7.2.

This tool can use several algorithms for bundle adjustment. The default is to use Google's Ceres Solver
(http://ceres-solver.org/).

Usage:

bundle_adjust <images> <cameras> <optional ground control points> \

-o <output prefix> [options]

Example (for ISIS):

bundle_adjust file1.cub file2.cub file3.cub -o results/run

Example (for Digital Globe Earth data, using ground control points):

bundle_adjust file1.tif file2.tif file1.xml file2.xml gcp_file.gcp \

--datum WGS_1984 -o results/run

The stereo program can then be told to use the adjusted cameras via the option --bundle-adjust-prefix.

Table A.4: Command-line options for bundle_adjust

Option Description

--help|-h Display the help message.

--output-prefix|-o filename Pre�x for output �lenames.

--bundle-adjuster string [default: Ceres] Choose a solver from: Ceres, RobustSparse,
RobustRef, Sparse, Ref.

--cost-function string [default: Cauchy] Choose a cost function from: Cauchy, Pseu-
doHuber, Huber, L1, L2.

--robust-threshold double(=0.5) Set the threshold for robust cost functions.

--datum string Use this datum (needed only if ground con-
trol points are used). Options: WGS_1984,
D_MOON (radius is assumed to be 1,737,400
meters), D_MARS (radius is assumed to be
3,396,190 meters), etc.

--semi-major-axis double Explicitly set the datum semi-major axis in
meters (needed only if ground control points
are used).

--semi-minor-axis double Explicitly set the datum semi-minor axis in
meters (needed only if ground control points
are used).

--session-type|-t pinhole|isis|dg|rpc Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically by the �le extension.

--min-matches integer(=30) Set the minimum number of matches between
images that will be considered.
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--max-iterations integer(=100) Set the maximum number of iterations.

--overlap-limit integer(=3) Limit the number of subsequent images to
search for matches to the current image to
this value.

--camera-weight double(=1.0) The weight to give to the constraint that the
camera positions/orientations stay close to
the original values (only for the Ceres solver).

--lambda double Set the initial value of the LM parameter
lambda (ignored for the Ceres solver).

--threads integer(=0) Set the number threads to use. 0 means use
the default de�ned in the program or in the
.vwrc �le.

--report-level|-r integer=(10) Use a value >= 20 to get increasingly more
verbose output.

The bundle_adjust program will save the obtained adjustments (rotation and translation) for each camera
in plain text �les whose names start with the speci�ed output pre�x. This pre�x can then be passed to
stereo via the option --bundle-adjust-prefix.

A number of plain-text �les containing ground control points can be passed as input to bundle_adjust.
Such a �le must end with a .gcp extension, and contain one ground control point per line. Each line must
have the following �elds:

• ground control point id (integer)

• latitude (in degrees)

• longitude (in degrees)

• height above datum (in meters), with the datum itself speci�ed separately

• x, y, z standard deviations (three positive �oating point numbers, smaller values suggest more reliable
measurements)

On the same line, for each image in which the ground control point is visible there should be:

• image �le name

• column index in image (�oat)

• row index in image (�oat)

• column and row standard deviations (two positive �oating point numbers, smaller values suggest more
reliable measurements)

The �elds can be separated by spaces or commas. Here is a sample representation of a ground control point
measurement:

5 23.7 160.1 427.1 1.0 1.0 1.0 image1.tif 124.5 19.7 1.0 1.0 image2.tif 254.3 73.9 1.0 1.0
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A.4 point2dem

The point2dem program produces a GeoTIFF terrain model and/or an orthographic image from a set of
point clouds. The clouds can be created by the stereo command, or be in LAS or CSV format.

Example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--nodata-value -10000 -n

This produces a digital elevation model that has been referenced to the lunar spheroid of 1737.4 km. Pixels
with no data will be set to a value of -10000, and the resulting DEM will be saved in a simple cylindrical
map-projection. The resulting DEM is stored by default as a one channel, 32-bit �oating point GeoTIFF
�le.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard
image viewing application for debugging.

Another example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--orthoimage output-prefix -L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced by
the Stereo Pipeline. The resulting *-DRG.tif �le will be saved as a GeoTIFF image in a simple cylindrical
map-projection.

Multiple point clouds can be passed as inputs, to be combined into a single DEM. If it is desired to use the
--orthoimage option as above, the clouds need to be speci�ed �rst, followed by the L.tif images. Here is
an example, which combines together LAS and CSV point clouds together with an output �le from stereo:

point2dem in1.las in2.csv output-prefix-PC.tif -o combined \

--dem-spacing 0.001 --nodata-value -32768

A.4.1 Comparing with MOLA Data

When comparing the output of point2dem to laser altimeter data, like MOLA, it is important to understand
the di�erent kinds of data that are being discussed. By default, point2dem returns planetary radius values
in meters. These are often large numbers that are di�cult to deal with. If you use the -r mars option, the
output terrain model will be in meters of elevation with reference to the IAU reference spheroid for Mars:
3,396,190 m. So if a post would have a radius value of 3,396,195 m, in the model returned with the -r

mars option, that pixel would just be 5 m.

You may want to compare the output to MOLA data. MOLA data is released in three `�avors,' namely:
Topography, Radius, and Areoid. The MOLA Topography data product that most people use is just the
MOLA Radius product with the MOLA Areoid product subtracted. Additionally, it is important to note
that all of these data products have a reference value subtracted from them. The MOLA reference value is
NOT the IAU reference value, but 3,396,000 m.

In order to compare with the MOLA data, you can do one of two di�erent things. You could oper-
ate purely in radius space, and have point2dem create radius values that are directly comparable to the
MOLA Radius data. You can do this by having point2dem subtract the MOLA reference value by setting
--semi-major-axis 3396000 and --semi-minor-axis 3396000.

To get values that are directly comparable to MOLA Topography data, you'll need to run point2dem with
the option -r mars, then run the ASP tool dem_geoid (section A.7). This program will convert the DEM
height values from being relative to the IAU reference spheroid to being relative to the MOLA Areoid.
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A.4.2 Post Spacing

Recall that stereo creates a point cloud �le as its output and that you need to use point2dem on to create
a GeoTIFF that you can use in other tools. The point cloud �le is the result of taking the image-to-image
matches (which were created from the kernel sizes you speci�ed, and the subpixel versions of the same, if
used) and projecting them out into space from the cameras, and arriving at a point in real world coordinates.
Since stereo does this for every pixel in the input images, the default value that point2dem uses (if you
don't specify anything explicitly) is the input image scale, because there's an `answer' in the point cloud
�le for each pixel in the original image.

However, as you may suspect, this is probably not the best value to use because there really isn't that
much `information' in the data. The true `resolution' of the output model is dependent on a whole bunch of
things (like the kernel sizes you choose to use) but also can vary from place to place in the image depending
on the texture.

The general `rule of thumb' is to produce a terrain model that has a post spacing of about 3x the input
image ground scale. This is based on the fact that it is nearly impossible to uniquely identify a single pixel
correspondence between two images, but a 3x3 patch of pixels provides improved matching reliability. As
you go to numerically larger post-spacings on output, you're averaging more point data (that is probably
spatially correlated anyway) together.

So you can either use the --dem-spacing argument to point2dem to do that directly, or you can use your
favorite averaging algorithm to reduce the point2dem-created model down to the scale you want.

If you attempt to derive science results from an ASP-produced terrain model with the default DEM spacing,
expect serious questions from reviewers.

A.4.3 Using with LAS or CSV Clouds

The point2dem program can take as inputs point clouds in LAS and CSV formats. These di�er from point
clouds created by stereo by being, in general, not uniformly distributed. It is suggested that the user pick
carefully the output resolution for such �les (--dem-spacing). If the output DEM turns out to be sparse, the
spacing could be increased, or one could experiment with increasing the value of --search-radius-factor,
which will �ll in small gaps in the output DEM by searching further for points in the input clouds.

It is expected that the input LAS �les have spatial reference information such as WKT data. Otherwise it
is assumed that the points are raw x, y, z values in meters in reference to the planet center.

Unless the output projection is explicitly set when invoking point2dem the one from the �rst LAS �le will
be used.

For LAS or CSV clouds it is not possible to generate intersection error maps or ortho images.

For CSV clouds the option --csv-format must be set.

Table A.5: Command-line options for point2dem

Options Description

--nodata-value float(=min-z) Explicitly set the default missing pixel value. By de-
fault, the minimum z value in the model is used.

--use-alpha Create images that have an alpha channel.

--normalized|-n Also write a normalized version of the DEM (for de-
bugging).

--orthoimage Write an orthoimage based on the texture �les passed
in as inputs (after the point clouds).
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--errorimage Write an additional image whose values represent the
triangulation error in meters.

--output-prefix|-o output-prefix Specify the output pre�x.

--output-filetype|-t type(=tif) Specify the output �le type.

--x-offset float(=0) Add a horizontal o�set to the DEM.

--y-offset float(=0) Add a horizontal o�set to the DEM.

--z-offset float(=0) Add a vertical o�set to the DEM.

--rotation-order order(=xyz) Set the order of an Euler angle rotation applied to the
3D points prior to DEM rasterization.

--phi-rotation float(=0) Set a rotation angle phi.

--omega-rotation float(=0) Set a rotation angle omega.

--kappa-rotation float(=0) Set a rotation angle kappa.

--t_srs string Specify the projection (PROJ.4 string).

--reference-spheroid|-r earth|moon|mars Set the reference spheroid. This will override manually
set datum information.

--semi-major-axis float(=0) Explicitly set the datum semi-major axis in meters.

--semi-minor-axis float(=0) Explicitly set the datum semi-minor axis in meters.

--sinusoidal Save using a sinusoidal projection.

--mercator Save using a Mercator projection.

--transverse-mercator Save using transverse Mercator projection.

--orthographic Save using an orthographic projection.

--stereographic Save using a stereographic projection.

--lambert-azimuthal Save using a Lambert azimuthal projection.

--utm zone Save using a UTM projection with the given zone.

--proj-lat float The center of projection latitude (if applicable).

--proj-lon float The center of projection longitude (if applicable).

--proj-scale float The projection scale (if applicable).

--dem-spacing|-s float(=0) Set the output DEM resolution (in target georefer-
enced units per pixel). If not speci�ed, it will be com-
puted automatically (except for LAS and CSV �les).

--search-radius-factor float(=0) Multiply this factor by dem-spacing to get the search
radius. The DEM height at a given grid point is ob-
tained as a weighted average of heights of all points
in the cloud within search radius of the grid point,
with the weights given by a Gaussian. Default search
radius: max(dem-spacing, default_dem_spacing), so
the default factor is about 1.
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--csv-format string Specify the format of input CSV �les as a list of en-
tries column_index:column_type (indices start from
1). Examples: '1:x 2:y 3:z' (a Cartesian coordinate
system with origin at planet center is assumed, with
the units being in meters), '5:lon 6:lat 7:radius_m'
(longitude and latitude are in degrees, the radius is
measured in meters from planet center), '3:lat 2:lon
1:height_above_datum', 'utm:47N 1:easting 2:nor-
thing 3:height_above_datum' (the height above da-
tum is in meters). Can also use radius_km for col-
umn_type, when it is again measured from planet cen-
ter.

--rounding-error

float(=1/210=0.0009765625)
How much to round the output DEM and errors, in
meters (more rounding means less precision but po-
tentially smaller size on disk). The inverse of a power
of 2 is suggested.

--dem-hole-fill-len int(=0) Maximum dimensions of a hole in the output DEM to
�ll in, in pixels.

--orthoimage-hole-fill-len int(=0) Maximum dimensions of a hole in the output orthoim-
age to �ll in, in pixels.

--hole-fill-mode int(=1) Choose the algorithm to �ll holes. [1: Interpolate
based on valid values in four directions: left, right,
up, and down (fast). 2: Weighted average of all valid
pixels within a window of size hole-�ll-len (slow).

--hole-fill-num-smooth-iter int(=4) How many times to iterate to smooth the result of
hole-�lling with a Gaussian kernel.

--remove-outliers-params pct (float)

factor (float) [default: 75.0 3.0]

Outlier removal based on percentage. Points with tri-
angulation error larger than pct-th percentile times
factor will be removed as outliers.

--max-valid-triangulation-error

float(=0)

Outlier removal based on threshold. Points with tri-
angulation error larger than this (in meters) will be
removed from the cloud.

--use-surface-sampling [default:

false]

Use the older algorithm, interpret the point cloud as a
surface made up of triangles and sample it (prone to
aliasing).

--fsaa float(=3) Oversampling amount to perform antialiasing. Ob-
solete, can be used only in conjunction with
--use-surface-sampling.

--threads int(=0) Select the number of processors (threads) to use.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

--cache-dir directory(=/tmp) Folder for temporary �les. Normally this need not be
changed.

--help|-h Display the help message.
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A.5 point2mesh

Produces a mesh surface that can be visualized in osgviewer, which is a standard 3D viewing application
that is part of the open source OpenSceneGraph package. 1

Unlike DEMs, the 3D mesh is not meant to be used as a �nished scienti�c product. Rather, it can be used
for fast visualization to create a 3D view of the generated terrain.

The point2mesh program requires a point cloud �le and an optional texture �le (output-prefix -PC.tif
and normally output-prefix -L.tif). When a texture �le is not provided, a 1D texture is applied in the
local Z direction that produces a rough rendition of a contour map. In either case, point2mesh will produce
a output-prefix.osgb �le that contains the 3D model in OpenSceneGraph format.

Two options for osgviewer bear pointing out: the -l �ag indicates that synthetic lighting should be
activated for the model, which can make it easier to see �ne detail in the model by providing some real-
time, interactive hillshading. The -s �ag sets the sub-sampling rate, and dictates the degree to which the
3D model should be simpli�ed. For 3D reconstructions, this can be essential for producing a model that
can �t in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In
other words that mean only 1/102 of the points are being used to create the model. Adjust this sampling
rate according to how much detail is desired, but remember that large models will impact the frame rate
of the 3D viewer and a�ect performance.

Example:
point2mesh -s 2 output-prefix -PC.tif output-prefix -L.tif

To view the resulting output-prefix.osgb �le use osgviewer.

Fullscreen:
> osgviewer output-prefix.osgb

In a window:
> osgviewer output-prefix.osgb --window 50 50 1000 1000

Inside osgviewer, the keys L, T, W, and F can be used to toggle on and o� lighting, texture, wireframe,
and full-screen modes. The left, middle, and right mouse buttons control rotation, panning, and zooming
of the model.

Table A.6: Command-line options for point2mesh

Options Description

--help|-h Display the help message.

--simplify-mesh float Run OSG Simpli�er on mesh, 1.0 = 100%.

--smooth-mesh Run OSG Smoother on mesh

--use-delaunay Uses the delaunay triangulator to create a surface from the
point cloud. This is not recommended for point clouds with
noise issues.

--step|-s integer(=10) Sampling step size for the mesher.

--input-file pointcloud-file Explicitly specify the input �le.

--output-prefix|-o output-prefix Specify the output pre�x.

--texture-file texture-file Explicitly specify the texture �le.

--output-filetype|-t type(=ive) Specify the output �le type.

--enable-lighting|-l Enables shades and lighting on the mesh.

1The full OpenSceneGraph package is not bundled with the Stereo Pipeline, but the osgviewer program is. You can
download and install this package separately from http://www.openscenegraph.org/.
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--center Center the model around the origin. Use this option if you
are experiencing numerical precision issues.
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A.6 dem_mosaic

The program dem_mosaic takes as input a list of DEM �les, optionally erodes pixels at the DEM boundaries,
and creates a mosaic, blending the DEMs where they overlap.

Usage:

dem_mosaic [options] <dem files or -l dem_files_list.txt> -o output_file_prefix

The input DEM can either be set on the command line, or if there are too many they can be listed in a
text �le (one per line) and that �le can be passed to the tool.

The output mosaic is written as non-overlapping tiles with desired tile size, with the size set either in pixels
or in georeferenced (projected) units. The default tile size is large enough that normally the entire mosaic
is saved as one tile.

Individual tiles can be saved via the --tile-index option (the tool displays the total number of tiles when
it is being run). As such, separate processes can be invoked for individual tiles for increased robustness and
perhaps speed.

The output mosaic tiles will be named <output pre�x>-tile-<tile index>.tif, where <output pre�x> is an
arbitrary string. For example, if it is set to results/output, all the tiles will be in the results directory.
The tile names will be adjusted accordingly if one of the --first, --last, --min, etc. options is invoked
(see below).

By the default, the output mosaicked DEM will use the same grid size and projection as the �rst input
DEM. These can be changed via the --tr and --t_srs options.

Instead of blending, dem_mosaic can compute the image of �rst, last, minimum, maximum, mean, median,
and count of all encountered valid DEM heights at output grid points. For the ��rst� and �last� operations,
we use the order in which DEMs were passed in.

Table A.7: Command-line options for dem_mosaic

Options Description

-l | --dem-list-file string Text �le listing the DEM �les to mosaic, one per line.

-o | --output-prefix string Specify the output pre�x.

--tile-size integer(=1000000) The maximum size of output DEM tile �les to write, in pix-
els.

--tile-index integer The index of the tile to save (starting from zero). When
this program is invoked, it will print out how many tiles are
there. Default: save all tiles.

--erode-length integer(=0) Erode input DEMs by this many pixels at boundary and hole
edges before mosaicking them.

--blending-length integer(=200) Larger values of this number (measured in input DEM pixels)
may result in smoother blending while using more memory
and computing time.

--tr double Output DEM resolution in target georeferenced units per
pixel. Default: use the same resolution as the �rst DEM to
be mosaicked.

--t_srs string Specify the output projection (PROJ.4 string). Default: use
the one from the �rst DEM to be mosaicked.
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--t_projwin xmin ymin xmax ymax Limit the mosaic to this region, with the corners given in
georeferenced coordinates (xmin ymin xmax ymax). Max is
exclusive.

--georef-tile-size double Set the tile size in georeferenced (projected) units (e.g., de-
grees or meters).

--output-nodata-value double No-data value to use on output. Default: use the one from
the �rst DEM to be mosaicked.

--first Keep the �rst encountered DEM value (in the input order).

--last Keep the last encountered DEM value (in the input order).

--min Keep the smallest encountered DEM value.

--max Keep the largest encountered DEM value.

--mean Find the mean DEM value.

--median Find the median DEM value (this can be memory-intensive,
fewer threads are suggested).

--count Each pixel is set to the number of valid DEM heights at that
pixel.

--threads integer(=4) Set the number of threads to use.

--help|-h Display the help message.
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A.7 dem_geoid

This tool takes as input a DEM whose height values are relative to the datum ellipsoid, and adjusts those
values to be relative to the equipotential surface of the planet (geoid on Earth, and areoid on Mars). The
program can also apply the reverse of this adjustment. The adjustment simply subtracts from the DEM
height the geoid height (correcting, if need be, for di�erences in dimensions between the DEM and geoid
datum ellipsoids).

Three geoids and one areoid are supported. The Earth geoids are: EGM96 and EGM2008, relative
to the WGS84 datum ellipsoid (http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm96/egm96.
html, http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html) and NAVD88,
relative to the NAD83 datum ellipsoid (http://www.ngs.noaa.gov/GEOID/GEOID09/).

The Mars areoid is MOLA MEGDR (http://geo.pds.nasa.gov/missions/mgs/megdr.html). When im-
porting it into ASP, we adjusted the areoid height values to be relative to the IAU reference spheroid for
Mars of radius 3,396,190 m, to be consistent with the DEM data produced by ASP. The areoid at that
source was relative to the Mars radius of 3,396,000 m.

Table A.8: Command-line options for dem_geoid

Options Description

--help|-h Display the help message.

--nodata-value integer(=-32768) The value of no-data pixels, unless speci�ed in the DEM.

--geoid string Specify the geoid to use for Earth WGS84 DEMs. Options:
EGM96, EGM2008. Default: EGM96.

--output-prefix|-o filename Specify the output �le pre�x.

--double Output using double precision (64 bit) instead of �oat (32
bit).

--reverse-adjustment Go from DEM relative to the geoid/areoid to DEM relative
to the datum ellipsoid.

A.8 dg_mosaic

This tool can be used when processing Digital Globe Imagery (chapter 4). A Digital Globe satellite may
take a picture, and then split it into several images and corresponding camera XML �les. dg_mosaic will
mosaic these images into a single �le, and create the appropriate combined camera XML �le.

Digital Globe camera �les contain, in addition to the original camera models, their RPC approximations
(section 8.10). dg_mosaic outputs both types of combined models. The combined RPC model can be used
to map-project the mosaicked images with the goal of computing stereo from them (section 4.2).

The tool needs to be applied twice, for both the left and right image sets.

dg_mosaic can also reduce the image resolution while creating the mosaics (with the camera �les modi�ed
accordingly).

Table A.9: Command-line options for dg_mosaic

Options Description

--help|-h Display the help message.

--reduce-percent integer(=100) Render a reduced resolution image and XML based on this
percentage.
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--skip-rpc-gen [default: false] Skip RPC model generation.

--rpc-penalty-weight float(=0.1) The weight to use to penalize higher order RPC coe�cients
when generating the combined RPC model. Higher penalty
weight results in smaller such coe�cients.

--output-prefix string The pre�x for the output .tif and .xml �les.

--band integer Which band to use (for multi-spectral images).

--input-nodata-value float Nodata value to use on input; input pixel values less than or
equal to this are considered invalid.

--output-nodata-value float Nodata value to use on output.

--preview Render a small 8 bit png of the input for preview.

-- dry-run|-n Make calculations, but just print out the commands.
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A.9 mapproject

The tool mapproject is used to map-project a camera image onto a DEM. The obtained images can be
used, for example, to visualize how camera images would look when projected onto the ground obtained by
doing stereo of these images (ideally, if there were no correlation or triangulation error, the images would
project perfectly). The tool can also be used to compute stereo from the obtained map-projected images;
this functionality is currently supported only with RPC models (section 4.2).

mapproject supersedes the older orthoproject tool, which could map-project only with ISIS and pinhole
camera models (the latter program is still being kept for a few releases for backward compatibility). We
ported all features of orthoproject except for projecting of vector imagery (for example, RGB pixel data).

mapproject is single-threaded for ISIS cameras due to the limitations of ISIS. At some point this tool will
be able to distribute itself using multiple processes to work around this limitation.

Example:

mapproject -t isis DEM.tif image.cub camera.isis_adjust \

output-IMG.tif --ppd 256

Table A.10: Command-line options for mapproject

Options Description

--nodata-value float(=-32768) No-data value to use unless speci�ed in the input image.

--t_srs Specify the projection (PROJ.4 string). If not provided, use
the one from the DEM.

--tr float Set the output �le resolution in target georeferenced units
per pixel.

--mpp float Set the output �le resolution in meters per pixel.

--ppd float Set the output �le resolution in pixels per degree.

--session-type|-t pinhole|isis|rpc Select the stereo session type to use for processing. Choose
'rpc' if it is desired to later do stereo with the 'dg' session.

--t_projwin xmin ymin xmax ymax Limit the map-projected image to this region, with the cor-
ners given in georeferenced coordinates (xmin ymin xmax
ymax). Max is exclusive.

--t_pixelwin xmin ymin xmax ymax Limit the map-projected image to this region, with the cor-
ners given in pixels (xmin ymin xmax ymax). Max is exclu-
sive.

--bundle-adjust-prefix string Use the camera adjustment obtained by previously running
bundle_adjust with this output pre�x.

--threads int(=0) Select the number of processors (threads) to use.

--no-bigtiff Tell GDAL to not create bigti�s.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

--cache-dir directory(=/tmp) Folder for temporary �les. Normally this need not be
changed.

--help|-h Display the help message.
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A.10 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several di�erent versions of the disparity map; the most important ending with
extensions *-D.tif and *-F.tif. (see Appendix C for more information.) These raw disparity map �les can
be useful for debugging because they contain raw disparity values as measured by the correlator; however
they cannot be directly visualized or opened in a conventional image browser. The disparitydebug tool
converts a single disparity map �le into two normalized TIFF image �les (*-H.tif and *-V.tif, containing
the horizontal and vertical, or line and sample, components of disparity, respectively) that can be viewed
using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can
serve as useful summary statistics when tuning the search range settings in the stereo.default �le.

Table A.11: Command-line options for disparitydebug

Options Description

--help|-h Display the help message

--input-file filename Explicitly specify the input �le

--output-prefix|-o filename Specify the output �le pre�x

--output-filetype|-t type(=tif) Specify the output �le type

--float-pixels Save the resulting debug images as 32 bit �oating point �les
(if supported by the selected �le type)

A.11 orbitviz

Produces a Google Earth Keyhole Markup Language (KML) �le useful for visualizing camera position. The
input for this tool is one or more *.cub �les.

Table A.12: Command-line options for orbitviz

Options Description

--help|-h Display the help message

--output|-o filename(=orbit.kml) Speci�es the output �le name

--scale|-s float(=1) Scale the size of the coordinate axes by this amount. Ex: To
scale axis sizes up to earth size, use 3.66

--use_path_to_dae_model|-u fullpath Use this dae model to represent camera location. Google
Sketch up can create these.
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Figure A.1: Example of a KML visualization produced with orbitviz depicting camera locations for the
Apollo 15 Metric Camera during orbit 33 of the Apollo command module.
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A.12 cam2map4stereo.py

This program takes similar arguments as the ISIS3 cam2map program, but takes two input images. With
no arguments, the program determines the minimum overlap of the two images, and the worst common
resolution, and then map-projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py
does is provided in the discussion on aligning images on page 16.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the
full image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it,
select the latitude and longitude ranges, and then use cam2map4stereo.py's --lat, --lon, and optionally
--resolution options to pick out just the part you want.

Use the --dry-run option the �rst few times to get an idea of what cam2map4stereo.py does for you.

Table A.13: Command-line options for cam2map4stereo.py

Options Description

--help|-h Display the help message.

--manual Read the manual.

--map=MAP |-m MAP The map�le to use for cam2map.

--pixres=PIXRES |-p PIXRES The pixel resolution mode to use for cam2map.

--resolution=RESOLUTION |-r RESOLUTION Resolution of the �nal map for cam2map.

--interp=INTERP |-i INTERP Pixel interpolation scheme for cam2map.

--lat=LAT |-a LAT Latitude range for cam2map, where LAT is of the form
min:max. So to specify a latitude range between -5 and 10
degrees, it would look like --lat=-5:10.

--lon=LON |-o LON Longitude range for cam2map, where LON is of the form
min:max. So to specify a longitude range between 45 and
47 degrees, it would look like --lon=40:47.

--dry-run|-n Make calculations, and print the cam2map command that
would be executed, but don't actually run it.

--suffix|-s Su�x that gets inserted in the output �le names, defaults to
`map'.
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A.13 point2las

This tool can be used to convert point clouds generated by ASP to the public LAS format for interchange
of 3-dimensional point cloud data.

Table A.14: Command-line options for point2las

Options Description

--help|-h Display the help message.

--reference-spheroid|-r earth|moon|mars Set the reference spheroid. This will create a geo-referenced
las �le in respect to the spheroid.

--compressed Compress using laszip.

--output-prefix|-o filename Specify the output �le pre�x.

--threads integer(=0) Set the number threads to use. 0 means use the default
de�ned in the program or in the .vwrc �le.

--tif-compress None|LZW|Deflate|Packbits TIFF compression method.

--cache-dir directory(=/tmp) Folder for temporary �les. Normally this does not need to
be changed.

A.14 pc_align

This tool can be used to align two point clouds using Point-to-Plane or Point-to-Point Iterative Closest Point
(ICP). It uses the libpointmatcher library [25] (https://github.com/ethz-asl/libpointmatcher).

Several important things need to be kept in mind if pc_align is to be used successfully and give accurate
results, as described below.

Due to the nature of ICP, the reference (�xed) point cloud should be denser than the source (movable)
point cloud to get the most accurate results. This is not a serious restriction, as one can perform the
alignment this way and then simply invert the obtained transform if desired (pc_align outputs both the
direct and inverse transform, and can output the reference point cloud transformed to match the source
and vice-versa).

In many typical applications, the source and reference point clouds are already roughly aligned, but the
source point cloud may cover a larger area than the reference. The user should provide to pc_align the
expected maximum distance (displacement) source points may move by as result of alignment, using the
option --max-displacement. This number will help remove source points too far from the reference point
cloud which may not match successfully and may degrade the accuracy. If in doubt, this value can be set
to something large but still reasonable, as the tool is able to throw away a certain number of unmatched
outliers. At the end of alignment, pc_align will display the observed maximum displacement, a multiple
of which can be used to seed the tool in a subsequent run.

The user can choose how many points to pick from the reference and source point clouds to perform the
alignment. The amount of memory and processing time used by pc_align is directly proportional to these
numbers.

Normally Point-to-Plane ICP is more accurate than Point-to-Point, but the latter can be good enough if
the input point clouds have small alignment errors and it is faster and uses less memory as well. The tool
also accepts an option named --highest-accuracy which will compute the normals for Point-to-Plane ICP
at all points rather than about a tenth of them. This option is not necessary most of the time, but may
result in better alignment at the expense of using more memory and processing time.
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The input point clouds can be in one of several formats: ASP's point cloud format, DEMs as GeoTIFF
or ISIS cub �les, LAS �les, or plain-text CSV �les (with .csv or .txt extension). By default, CSV �les are
expected to have on each line the latitude and longitude (in degrees), and the height above the datum (in
meters), separated by commas or spaces with an optional header line. Alternatively, the user can specify
the format of the CSV �le via the --csv-format option. Entries in the CSV �le can then be (in any order)
(a) longitude, latitude (in degrees), height above datum (in meters), (b) longitude, latitude, distance from
planet center (in meters or km), (c) easting, northing and height above datum in UTM coordinates (in
meters), (d) Cartesian coordinates (x, y, z) measured from planet center (in meters). The precise syntax is
described in the table below. The tool can also auto-detect the LOLA RDR PointPerRow format.

If none of the input �les are a DEM from which the datum can be inferred, and the input �les are
not in Cartesian coordinates, the datum needs to be speci�ed via the --datum option, or by setting
--semi-major-axis and --semi-minor-axis.

The transform obtained by pc_align is output to a �le as a 4 × 4 matrix with the upper-left 3 × 3
submatrix being the rotation and the top three elements of the right-most column being the translation.
This transform, if applied to the source point cloud, will bring it in alignment with the reference point
cloud. The transform assumes the 3D Cartesian coordinate system with the origin at the planet center.
This matrix can be supplied back to the tool as an initial guess. The inverse transform is saved to a �le as
well.

The pc_align program outputs the translation component of this transform, de�ned as the vector from
the centroid of the original source points to the centroid of the transformed source points. This translation
component is displayed in three ways (a) Cartesian coordinates with the origin at the planet center, (b) Local
North-East-Down coordinates at the centroid of the original source points, and (c) Latitude-Longitude-
Height di�erences between the two centroids. If the e�ect of the transform is small (e.g., the points moved
by at most several hundred meters) then the representation in the form (b) above is most amenable to
interpretation as it is in respect to cardinal directions and height above ground if standing at a point on
the planet surface.

The rotation + transform itself, with its origin at the center of the planet, can result in large movements
on the planet surface even for small angles of rotation. Because of this it may be di�cult to interpret both
its rotation and translation components.

The tool outputs to CSV �les the lists of errors together with their locations in the source point cloud,
before and after the alignment of source points, where an error is de�ned as the distance from a source
point used in alignment to the closest reference point. The format of output CSV �les is the same as of
input CSV �les, or as given by --csv-format, although any columns of extraneous data in the input �les
are not saved on output.

The program prints to screen and saves to a log �le the 16th, 50th, and 84th error percentiles as well as
the means of the smallest 25%, 50%, 75%, and 100% of the errors.

By default, when pc_align discards outliers during the computation of the alignment transform, it keeps
the 75% of the points with the smallest errors. As such, a way of judging the e�ectiveness of the tool is to
look at the mean of the smallest 75% of the errors before and after alignment.

The transformed input point clouds can also be saved to disk if desired. If an input point cloud is in CSV or
ASP point cloud format, the output transformed cloud will be in the same format. If the input is a DEM,
the output will be an ASP point cloud, since a gridded point cloud may not stay so after a 3D transform.
The point2dem program can be used to resample the obtained point cloud back to a DEM.

The convergence history for pc_align (the translation and rotation change at each iteration) is saved to
disk and can be used to �ne-tune the stopping criteria.

Usage:
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pc_align --max-displacement arg [other options] <reference cloud> <source cloud> \

-o <output prefix>}

Table A.15: Command-line options for pc_align

Options Description

--help|-h Display the help message.

--threads integer(=0) Set the number threads to use. 0 means use the default
as set by OpenMP. Only some parts of the algorithm
are multi-threaded.

--initial-transform string The �le containing the rotation + translation trans-
form to be used as an initial guess. It can come from
a previous run of the tool.

--num-iterations default: 1000 Maximum number of iterations.

--diff-rotation-error default: 10−8 Change in rotation amount below which the algorithm
will stop (if translation error is also below bound), in
degrees.

--diff-translation-error default: 10−3 Change in translation amount below which the algo-
rithm will stop (if rotation error is also below bound),
in meters.

--max-displacement float Maximum expected displacement of source points as
result of alignment, in meters (after the initial guess
transform is applied to the source points). Used for
removing gross outliers in the source (movable) point
cloud.

--outlier-ratio default: 0.75 Fraction of source (movable) points considered inliers
(after gross outliers further than max-displacement
from reference points are removed).

--max-num-reference-points default: 108 Maximum number of (randomly picked) reference
points to use.

--max-num-source-points default: 105 Maximum number of (randomly picked) source points
to use (after discarding gross outliers).

--alignment-method default:

point-to-plane

The type of iterative closest point method to use.
[point-to-plane, point-to-point]

--highest-accuracy Compute with highest accuracy for point-to-plane (can
be much slower).

--datum string Use this datum for CSV �les. [WGS_1984, D_MOON
(radius is assumed to be 1,737,400 meters), D_MARS
(radius is assumed to be 3,396,190 meters), etc.]

--semi-major-axis float Explicitly set the datum semi-major axis in meters.

--semi-minor-axis float Explicitly set the datum semi-minor axis in meters.
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--csv-format string Specify the format of input (and output) CSV �les as
a list of entries column_index:column_type (indices
start from 1). Examples: '1:x 2:y 3:z' (a Cartesian
coordinate system with origin at planet center is as-
sumed, with the units being in meters), '5:lon 6:lat
7:radius_m' (longitude and latitude are in degrees,
the radius is measured in meters from planet center),
'3:lat 2:lon 1:height_above_datum', 'utm:47N 1:east-
ing 2:northing 3:height_above_datum' (the height
above datum is in meters). Can also use radius_km for
column_type, when it is again measured from planet
center.

--config-file file.yaml This is an advanced option. Read the alignment pa-
rameters from a con�guration �le, in the format ex-
pected by libpointmatcher, over-riding the command-
line options.

--output-prefix|-o filename Specify the output �le pre�x.

--compute-translation-only Compute the transform from source to reference point
cloud as a translation only (no rotation).

--save-transformed-source-points Apply the obtained transform to the source points so
they match the reference points and save them.

--save-inv-transformed-reference-points Apply the inverse of the obtained transform to the
reference points so they match the source points and
save them.

A.15 wv_correct

An image taken by one of Digital Globe's World View satellite cameras is formed of several blocks as tall as
the image, mosaicked from left to right, with each block coming from an individual CCD sensor [12]. Either
due to imperfections in the camera or in the subsequent processing the image blocks are o�set in respect
to each other in both row and column directions by a subpixel amount. These so-called CCD boundary
artifacts are not visible in the images but manifest themselves as discontinuities in the the DEMs obtained
with ASP.

The tool named wv_correct is able to signi�cantly attenuate these artifacts (see Figure 4.3 in the Digital
Globe tutorial for an example). This tool should be used on raw Digital Globe images before calling
dg_mosaic and mapproject.

It is important to note that both the positions of the CCD o�sets and the o�set amounts were determined
empirically without knowledge of Digital Globe's mosaicking process; this is why we are not able to remove
these artifacts completely.

Presently, wv_correct works for WV01 images for TDI of 16, 32, 48, 56 and 64, and for WV02 images
for TDI of 16, 48, and 64 (both the forward and reverse scan directions for both cameras). In addition,
the WV01 TDI 8 forward scan direction is supported. These are by far the most often encountered TDI.
We plan to extend the tool to support other TDI when we get more such data to be able to compute the
corrections.

Usage:
wv_correct [options] <input image> <input camera model> <output image>
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Table A.16: Command-line options for wv_correct

Options Description

--help|-h Display the help message.

--threads integer(=0) Set the number threads to use. 0 means use the default
de�ned in the program or in the .vwrc �le.

A.16 lronac2mosaic.py

This tool takes in two LRONAC �les (M*LE.IMG and M*RE.IMG) and produces a single noproj mosaic
composed of the two inputs. It performs the following operations in this process: lronac2isis, lronaccal,
lronacecho, spiceinit, noproj, and handmos. The o�sets used in handmos are calculated using an ASP
internal tool called lronacjitreg and is similar in functionality to the ISIS command hijitreg. O�sets
need to be calculated via feature measurements in image to correct for imperfections in camera pointing.
The angle between LE and RE optics changes slightly with spacecraft temperature.

Optionally, lronac2mosiac.py can be given many IMG �les all at once. The tool will then look at image
names to determine which should be paired and mosaicked. The tool will also spawn multiple processes
of ISIS commands were possible to �nish the task faster. The max number of simultaneous processes is
limited by the --threads option.

Usage:
lronac2mosaic.py [options] <IMG file 1> <IMG file 2>

Table A.17: Command-line options for lronac2mosaic.py

Options Description

--manual Display the help message.

--output-dir|-o Set the output folder (default is input folder).

--stop-at-no-proj Stops processing after the noproj steps are complete.

--resume-at-no-proj Restarts processing using the results from 'stop-at-no-proj.

--threads|-t Specify the number of threads to use.

--keep|-k Keep all intermediate �les.
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The stereo.default File

The stereo.default �le contains con�guration parameters that the stereo program uses to process images.
The stereo.default �le is loaded from the current working directory when you run stereo unless you
specify a di�erent �le using the -s option. Run stereo --help for more information. The extension is not
important for this �le.

A sample stereo.default.example �le is included in the examples/ directory of the Stereo Pipeline
software distribution.

B.1 Preprocessing

alignment-method (= a�neepipolar, homography, epipolar, none) (default = a�neepipolar)

When alignment-method is set to homography, stereo will attempt to pre-align the images by
automatically detecting tie-points between images using a feature based image matching technique.
Tiepoints are stored in a *.match �le that is used to compute a linear homography transformation of
the right image so that it closely matches the left image. Note: the user may exercise more control
over this process by using the ipfind and ipmatch tools.

When alignment-method is set to affineepipolar, stereo will attempt to pre-align the images by
detecting tie-points, as earlier, and using those to transform the images such that pairs of conjugate
epipolar lines become collinear and parallel to one of the image axes. The e�ect of this is equivalent
to rotating the original cameras which took the pictures.

When alignment-method is set to epipolar, stereo will apply a 3D transform to both images so
that their epipolar lines will be horizontal. This speeds of stereo correlation as it greatly reduces the
area required for searching.

Epipolar alignment is only available when performing stereo matches using the pinhole stereo session
(i.e. when using stereo -t pinhole), and cannot be used when processing ISIS images at this time.

force-use-entire-range (default = false)
By default, the Stereo Pipeline will normalize ISIS images so that their maximum and minimum
channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you want to
disable normalization and force the raw values to pass directly to the stereo correlations algorithms.

For example, if ISIS's histeq has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.
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individually-normalize (default = false)
By default, the maximum and minimum valid pixel value is determined by looking at both images.
Normalized with the same �global� min and max guarantees that the two images will retain their
brightness and contrast relative to each other.

This option forces each image to be normalized to its own maximum and minimum valid pixel value.
This is useful in the event that images have di�erent and non-overlapping dynamic ranges. You can
sometimes tell when this option is needed: after a failed stereo attempt one of the recti�ed images
(*-L.tif and *-R.tif) may be either mostly white or black. Activating this option may correct this
problem.

Note: Photometric calibration and image normalization are steps that can and should be carried out
beforehand using ISIS's own utilities. This provides the best possible input to the stereo pipeline and
yields the best stereo matching results.

nodata-value (default = none)
Pixels with values less than or equal to this number are treated as no-data. This overrides the nodata
values from input images.

B.2 Correlation

pre�lter-mode (= 0,1,2,3) (default = 2)
This selects the pre-processing �lter to be used to prepare imagery before it is fed to the initialization
stage of the pipeline.

0 - None

1 - Subtracted Mean - This takes a preferably large Gaussian kernel and subtracts its value from
the input image. This e�ectively reduces low frequency content in the image. The result is
correlation that is immune to translations in image intensity.

2 - LoG Filter - Takes the Laplacian of Gaussian of the image, This provides some immunity to
di�erences in lighting conditions between a pair of images by isolating and matching on blob
features in the image.

3 - Sign of LoG - Not recommended for using. It was meant for an experimental XOR cost metric
for correlation. This will still produce results. Though the results may not be as nice as one
would like.

For all of the modes above, the size of the �lter kernel is determined by the prefilter-kernel-width
parameter below.

The choice of pre-processing �lter must be made with thought to the cost function being used (see
cost-mode, below). LoG �lter preprocessing provides good immunity to variations in lighting condi-
tions and is usually the recommended choice.

pre�lter-kernel-width (= �oat) (default = 1.4)
This de�nes the diameter of the Gaussian convolution kernel used for the preprocessing modes 1 and
2 above. A value of 1.4 works well for LoG and 25-30 works well for Subtracted Mean.

corr-seed-mode (=0,1,2,3) (default = 1)
This integer parameter selects a strategy for how to solve for the low-resolution integer correlation
disparity, which is used to seed the full-resolution disparity later on.
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0 - None - Don't calculate a low-resolution variant of the disparity image. The search range provided
by corr-search is used directly in computing the full-resolution disparity.

1 - Low-resolution disparity from stereo - Calculate a low-resolution version of the disparity
from the integer correlation of subsampled left and right images. The low-resolution disparity
will be used to narrow down the search range for the full-resolution disparity.

This is a useful option despite the fact that our integer correlation implementation does indeed
use a pyramid approach. Our implementation cannot search in�nitely into lower resolutions due
to its independent and tiled nature. This low-resolution disparity seed is a good hybrid approach.

2 - Low-resolution disparity from an input DEM - Use a lower-resolution DEM together with
an estimated value for its error to compute the low-resolution disparity, which will then be used
to �nd the full-resolution disparity as above. These quantities can be speci�ed via the options
disparity-estimation-dem and disparity-estimation-dem-error respectively.

3 - Disparity from full-resolution images at a sparse number of points. This is an advanced
option for terrain having snow and no large-scale features. It is described in section 4.4.

For large images, bigger than MOC-NA, using the low-resolution disparity seed is a de�nitive plus.
Smaller images such as Cassini ISS or MER images should just shut this option o� to save storage
space.

corr-sub-seed-percent (= �oat) (default=0.25)
When using corr-seed-mode 1, the solved-for or user-provided search range is grown by this factor
for the purpose of computing the low-resolution disparity.

cost-mode (= 0,1,2) (default = 2)

This de�nes the cost function used during integer correlation. Squared di�erence is the fastest cost
function. However it comes at the price of not being resilient against noise. Absolute di�erence is
the next fastest and is a better choice. Normalized cross correlation is the slowest but is designed
to be more robust against image intensity changes and slight lighting di�erences. Normalized cross
correlation is about 2x slower than absolute di�erence and about 3x slower than squared di�erence.

0 - absolute di�erence

1 - squared di�erence

2 - normalized cross correlation

corr-kernel (= integer integer) (default = 25 25)
These option determine the size (in pixels) of the correlation kernel used in the initialization step. A
di�erent size can be set in the horizontal and vertical directions, but square correlation kernels are
almost always used in practice.

corr-search (= integer integer integer integer)

These parameters determine the size of the initial correlation search range. The ideal search range
depends on a variety of factors ranging from how the images were pre-aligned to the resolution and
range of disparities seen in a given image pair. This search range is successively re�ned during
initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of
the disparities in a given image. However, setting tighter bounds on the search can sometimes reduce
the number of erroneous matches, so it can be advantageous to tune the search range for a particular
data set.

Commenting out these settings will cause stereo to make an attempt to guess its search range using
interest points.
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The order of the four integers de�ne the minimum horizontal and vertical disparity and then the
maximum horizontal and vertical disparity.

xcorr-threshold (= integer) (default = 2)

Integer correlation to a limited sense performs a correlation forward and backwards to double check
its result. This is one of the �rst �ltering steps to insure that we have indeed converged to a global
minimum for an individual pixel. The xcorr-threshold parameter de�nes an agreement threshold
in pixels between the forward and backward result.

Optionally, this parameter can be set to a negative number. This will signal the correlator to only
use the forward correlation result. This will drastically improve speed at the cost of additional noise.

use-local-homography (default = false)

This �ag, if provided, enables using local homography during correlation, as described in Section
6.2.2.

corr-timeout (= integer) (default = 300)

Correlation timeout for an image tile, in seconds. A non-positive value will result in no timeout
enforcement.

B.3 Subpixel Re�nement

subpixel-mode (= 0,1,2,3) (default = 1)
This parameter selects the subpixel correlation method. Parabola subpixel is very fast but will produce
results that are only slightly more accurate than those produced by the initialization step. Bayes EM
(mode 2) is very slow but o�ers the best quality. When tuning stereo.default parameters, it is
expedient to start out using parabola subpixel as a �draft mode.� When the results are looking good
with parabola subpixel, then they will look even better with subpixel mode 2. For inputs with little
noise, the a�ne method (subpixel mode 3) may produce results equivalent to Bayes EM in a shorter
time.

0 - no subpixel re�nement

1 - parabola �tting

2 - a�ne adaptive window, Bayes EM weighting

3 - a�ne window

4 - Lucas-Kanade method (experimental)

5 - a�ne adaptive window, Bayes EM with Gamma Noise Distribution (experimental)

For a visual comparison of the quality of these subpixel modes, refer back to Chapter:6.

subpixel-kernel (= integer integer) (default = 35 35) Specify the size of the horizontal and vertical size
(in pixels) of the subpixel correlation kernel. It is advantageous to keep this small for parabola �tting
in order to resolve �ner details. However for the Bayes EM methods, keep the kernel slightly larger.
Those methods weight the kernel with a Gaussian distribution, thus the e�ective area is small than
the kernel size de�ned here.
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B.4 Filtering

�lter-mode (= integer) (default = 1)
This parameter sets the �lter mode. Three modes are supported as described below. Here, by neigh-
boring pixels for a current pixel we mean those pixels within the window of half-size of rm-half-kernel
centered at the current pixel.

0 - No �ltering.

1 - Filter by discarding pixels at which disparity di�ers from mean disparity of neighbors by more
than max-mean-diff.

2 - Filter by discarding pixels at which percentage of neighboring disparities that are within rm-threshold
of current disparity is less than rm-min-matches.

rm-half-kernel (= integer integer) (default = 5 5)
This setting adjusts the behavior of an outlier rejection scheme that �erodes� isolated regions of pixels
in the disparity map that are in disagreement with their neighbors.

The two parameters determine the size of the half kernel that is used to perform the automatic removal
of low con�dence pixels. A 5 × 5 half kernel would result in an 11 × 11 kernel with 121 pixels in it.

max-mean-di� (= integer) (default = 3)
This parameter sets the maximum di�erence between the current pixel disparity and the mean of
disparities of neighbors in order for a given disparity value to be retained (for filter-mode 1).

rm-min-matches (= integer) (default = 60)
This parameter sets the percentage of neighboring disparity values that must fall within the inlier
threshold in order for a given disparity value to be retained (for filter-mode 2).

rm-threshold (= integer) (default = 3)
This parameter sets the inlier threshold for the outlier rejection scheme. This option works in con-
junction with RM_MIN_MATCHES above. A disparity value is rejected if it di�ers by more than
RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered (for filter-mode 2).

rm-clean-passes (= integer) (default = 1)
Select the number of outlier removal passes that are carried out. Each pass will erode pixels that do
not match their neighbors. One pass is usually su�cient.

enable-�ll-holes (default = false)

Enable �lling of holes in disparity using an inpainting method. Obsolete. It is suggested to use instead
point2dem's analogous functionality.

�ll-holes-max-size (= integer) (default = 100,000)
Holes with no more pixels than this number should be �lled in.

erode-max-size (= integer) (default = 0)
Isolated blobs with no more pixels than this number should be removed.
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B.5 Post-Processing (Triangulation)

near-universe-radius (= �oat) (default = 0.0)

far-universe-radius (= �oat) (default = 0.0)

These parameters can be used to �lter out triangulated points in the 3D point cloud. The points that
will be kept are those whose distance from the universe center (see below) is between near-universe-radius
and far-universe-radius, in meters.

bundle-adjust-pre�x (= string)

Use the camera adjustments obtained by previously running bundle_adjust with this output pre�x.

universe-center (default = none)
De�nes the reference location to use when �ltering the output point cloud using the above near and
far radius options. The available options are:

None - Disable �ltering.

Camera - Use the left camera's center as the universe center.

Zero - Use the center of the planet as the universe center.

point-cloud-rounding-error (= double)

How much to round the output point cloud values, in meters (more rounding means less precision
but potentially smaller size on disk). The inverse of a power of 2 is suggested. Default: 1/210 meters
(about 1mm) for Earth and proportionally less for smaller bodies.

save-double-precision-point-cloud (default = false)

Save the �nal point cloud in double precision rather than bringing the points closer to origin and
saving as �oat (marginally more precision at twice the storage).

compute-error-vector (default = false)

When writing the output point cloud, save the 3D triangulation error vector (the vector between the
closest points on the rays emanating from the two cameras), rather than just its length. In this case,
the point cloud will have 6 bands (storing the triangulation point and triangulation error vector)
rather than the usual 4. When invoking point2dem on this 6-band point cloud and specifying the
--errorimage option, the error image will contain the three components of the triangulation error
vector in the North-East-Down coordinate system.
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Guide to Output Files

The stereo tool generates a variety of intermediate �les that are useful for debugging. These are listed
below, along with brief descriptions about the contents of each �le. Note that the pre�x of the �lename for
all of these �les is dictated by the �nal command line argument to stereo. Run stereo --help for details.

*.vwip - image feature �les
If alignment-method is not none, the Stereo Pipeline will automatically search for image features to
use for tie-points. Raw image features are stored in *.vwip �les; one per input image. For example,
if your images are left.cub and right.cub you'll get left.vwip and right.vwip. Note: these �les
can also be generated by hand (and with �ner grained control over detection algorithm options) using
the ipfind utility.

*.match - image to image tie-points
The match �le lists a select group of unique points out of the previous .vwip �les that have been
identi�ed and matched in a pair of images. For example, if your images are left.cub and right.cub

you'll get a left__right.match �le.

The .vwip and .match �les are meant to serve as cached tie-point information, and they help speed
up the pre-processing phase of the Stereo Pipeline: if these �les exist then the stereo program will
skip over the interest point alignment stage and instead use the cached tie-points contained in the
*.match �les. In the rare case that one of these �les did get corrupted or your input images have
changed, you may want to delete these �les and allow stereo to regenerate them automatically. This
is also recommended if you have upgraded the Stereo Pipeline software.

*-L.tif - recti�ed left input image
The left input image of the stereo pair, saved after the pre-processing step. This image may be
normalized, but should otherwise be identical to the original left input image.

*-R.tif - recti�ed right input image
Right input image of the stereo pair, after the pre-processing step. This image may be normalized
and possibly translated, scaled, and/or rotated to roughly align it with the left image, but should
otherwise be identical to the original right input image.

*-lMask.tif - mask for left recti�ed image

*-rMask.tif - mask for right recti�ed image
These �les contain binary masks for the input images. These are used throughout the stereo process
to mask out pixels where there is no input data.

*-align-L.exr - left pre-alignment matrix
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*-align-R.exr - right pre-alignment matrix
The 3 × 3 a�ne transformation matrices that are used to warp the left and right images to roughly
align them. These �les are only generated if alignment-method is not none in the stereo.default

�le. Normally, a single transform is enough to warp one image to another (for example, the right
image to the left). The reason we use two transforms is the following: after the right image is warped
to the left, we would like to additionally transform both images so that the origin (0, 0) in the left
image would correspond to the same location in the right image. This will somewhat improve the
e�ciency of subsequent processing.

*-D.tif - disparity map after the disparity map initialization phase
This is the disparity map generated by the correlation algorithm in the initialization phase. It contains
integer values of disparity that are used to seed the subsequent sub-pixel correlation phase. It is largely
un�ltered, and may contain some bad matches.

Disparity map �les are stored in OpenEXR format as 3-channel, 32-bit �oating point images. (Channel
0 = horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation
This �le contains the disparity map after sub-pixel re�nement. Pixel values now have sub-pixel
precision, and some outliers have been rejected by the sub-pixel matching process.

*-F-corrected.tif - intermediate data product
Only created when alignment-method is not none. This is *-F.tif with e�ects of interest point
alignment removed.

*-F.tif - �ltered disparity map
The �ltered, sub-pixel disparity map with outliers removed (and holes �lled with the inpainting
algorithm if FILL_HOLES is on). This is the �nal version of the disparity map.

*-GoodPixelMap.tif - map of good pixels
An image showing which pixels were matched by the stereo correlator (gray pixels), and which were
�lled in by the hole �lling algorithm (red pixels).

*-PC.tif - point cloud image
The point cloud image is generated by the triangulation phase of Stereo Pipeline. Each pixel in
the point cloud image corresponds to a pixel in the left input image (*-L.tif). The point cloud has
four channels, the �rst three are the Cartesian coordinates of each point, and the last one has the
intersection error of the two rays which created that point (the intersection error is the closest distance
between rays). By default, the origin of the Cartesian coordinate system being used is a point in the
neighborhood of the point cloud. This makes the values of the points in the cloud relatively small,
and we save them in single precision (32 bits). This origin is saved in the point cloud as well using the
tag POINT_OFFSET in the GeoTi� header. To output point clouds using double precision with the
origin at the planet center, call stereo_tri with the option --save-double-precision-point-cloud.
This can e�ectively double the size of the point cloud.

Note: it is unlikely that your usual TIFF viewing programs will visualize this �le properly. This �le
should be considered a `data' �le, not an `image' �le. Other programs in the Stereo Pipeline, such as
point2mesh and point2dem will convert the contents of this �le to more easily visualized formats.

*-stereo.default - backup of the Stereo Pipeline settings �le
This is a copy of the stereo.default �le used by stereo. It is stored alongside the output products
as a record of the settings that were used for this particular stereo processing task.
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